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Abstract 
 

This study focuses on the exploration and implementation of various natural language processing 

(NLP) techniques to build a platform that supports language learners in learning and practicing text-based 

conversations in English as a foreign language (EFL). Along with the advancements of web and mobile 

technologies, computer-assisted language learning has been gaining traction in recent years. People around 

the world use a range of technologies connected to the internet to learn and communicate with each other 

using foreign languages, in complement to formal education at schools and universities. These online 

interactions are especially required more than usual when the world was hit by the COVID-19 pandemic, 

which started towards the end of 2019. Since then, the global industry, including schools and universities, 

has been forced, more than before, to communicate remotely using various internet technologies. Along 

with the rise of social media and communication platforms, chatting has become a common way of 

communicating between people, including at workplaces. Tools like Slack, Microsoft Teams, and Discord 

are increasingly being used as virtual offices in which many work interactions are happening in real-time. 

This study aims to address the gap in EFL education, focused on Japanese L1 students, to provide a 

platform for both teachers to easily integrate text-based conversation practices in classes and students to 

learn and practice English text conversations. The study focuses on the applicability of recent advances in 

the natural language processing field, such as morphological analysis tools, Transformers-based models, 

and various evaluation metrics, to build the system. The proposed system enables the user to conduct self-

practice with automatically generated questions and get immediate feedback to conduct self-assessment, 

especially when they are outside classes and teacher’s support is limited. Based on the experiments, the 

study shows several useful recent advances in the NLP field for supporting second language acquisition, 

and the proposed system is easy to use and considered useful for intermediate students to practice English. 

The use of computer-assisted language learning (CALL) and large language models (LLMs) has the 

potential to revolutionize the way English as a foreign language is learned and taught. Researchers and 

developers should always put the human first when developing these systems, as no matter how advanced 

the technologies behind the system are, if they are not used accordingly by the users due to 

misunderstanding or inability to do so, they will be less meaningful. 
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Chapter I  Introduction 
 

1.1  Background 

In Japan, as with many other countries whose primary language is not English, promoting the 

importance of English language proficiency often becomes in line with internationalization [1]. Ideally, 

new graduates from universities across the country should achieve proficiency to be ready to compete 

in the job market. To accomplish that, nowadays, English has become one of the most important 

subjects to learn by university students. However, there is still less emphasis on the importance of text-

based conversations (e.g., chats), which have increasingly become an essential skill in the industry in 

recent years. Furthermore, since the Covid-19 pandemic hit the world at the beginning of 2020, many 

organizations have been severely disrupted, and online education and work have rapidly become 

popular. Because of this, more interactions between peers, colleagues, teachers, and students are 

happening online, both in video calls and chats. Some of the most popular communication platforms 

used in the industry are Slack1 and Discord2. This increase in online interactions means that new 

graduates would need to adapt to this different style of English communication compared to the more 

formal ones that were commonly taught in universities. 

Most students graduating from higher education institutions, such as universities, have already 

learned English through courses and other language learning activities. However, to reach high 

proficiency levels and be successful at interacting with others, there are still many obstacles along this 

journey. For example, when learners can understand many of the vocabularies in a foreign language, 

they can infer a lot of words through the context. Many students stop actively using a foreign language 

and only focus on passively consuming foreign media instead. As a result, there is not enough 

repetition of the advanced vocabulary that the student needs to learn for it to become part of the 

productive vocabulary [2]. One possible way to enable the user to practice conversations, especially 

written ones, is by incorporating translation as a language learning method. 

With the recent advances in neural machine translation (NMT) models and computer-assisted 

technologies, there are more ways to provide the support needed by language learners, each according 

to the requirements. One of the most notable studies that advance NMT is the Transformer model [3]. 

Several other studies have proposed the use of context- aware NMT approaches that integrate source- 

and target-side contexts [4] [5] [6], which could be helpful in chat translation, since the context of a 

sentence could result in a different translation. In order to support the students to attain proficiency in 

foreign languages, many researchers and practitioners explore the applicability and usefulness of 

 
1 https://slack.com 
2 https://discord.com 

https://slack.com/
https://discord.com/
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computer-assisted language learning (CALL) platforms, such as mobile and game applications which 

are shown to be effective in promoting active study in learning English and encouraging the students 

to produce language in their own words [7]. Commercial products, such as Duolingo 3  and 

Clozemaster4, have also become very popular among foreign language learners.  

An essential building block in of recent computer-assisted language learning systems is the use 

of natural language processing and advanced machine learning algorithms, such as to using pragmatic 

reasoning to train neural networks for a listener model [8] and automated assessments [9].Amongst 

these new advancements in the natural language processing field, the arrival of large language models 

has shown the potential to advance language education even further. One key aspect of these models 

is the use of the Transformer architectures [10] and self-attention mechanisms [3], which have greatly 

improved their ability to handle long-range dependencies in natural language texts. The transformer 

architecture, with its self-attention mechanism, allows the model to better understand the relationships 

between words in a sentence, regardless of their position. 

This has numerous potential applications in education, such as generating practice problems 

and quizzes to aid students to better understand, contextualize and retain the material they are learning 

[11]. These models can help both students and teachers by providing access to vast amounts of 

language data and sophisticated algorithms that can generate practice problems, quizzes, and 

personalized feedback. For example, teachers can use large language models to automatically generate 

questions [12], or for automated assessment and scoring [13] [14]. This can save teachers a significant 

amount of time and provide students with quicker and more personalized feedback. On the other hand, 

for the students, large language model like ChatGPT can generate interactive dialogs which are 

personalized to each student, improving the overall experience of foreign language learning [15]. 

However, despite the potential benefits of these recent technologies, there are still many limitations 

and inconsistencies [16] of the systems, and also concerns about whether the users are ready to adopt 

these new technologies, especially to support foreign language learning. Commercial products that use 

various natural language processing techniques, such as have also become very popular among foreign 

language learners. 

1.2  Research Objectives 

Within the context of English learning for L1 Japanese speakers, this research aims to 

investigate the challenges faced by learners, mainly for intermediate learners to practice text-based 

conversations. In order to build a useful platform to support English learners practice text-based 

conversation, this research aims to implement, experiment, and evaluate NLP techniques that can be 

useful to achieve our intended platform. Finally, using the findings we get from the various 

 
3 https://duolingo.com/learn 
4 https://clozemaster.com  

https://duolingo.com/learn
https://clozemaster.com/
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experimentations, we then propose an interactive web-based software platform, with machine 

translation, to be used by learners for practicing text conversations in the form of chats and exercises 

for self-study. The resulting platform enables students to chat with their peers and teachers with 

Japanese to English translation support and conduct self-study via exercises. The system implements 

a framework to automatically generate questions given a dataset of parallel conversations and it allows 

the teachers to manually check and provide individualized feedback to the students. Moreover, we also 

implemented an automated scoring system which leverages large language models to provide 

immediate feedback to the students, enabling them to quickly assess the submitted answers. 

1.3  Structure of Dissertation 

Chapter I serves as an introduction of the motivation, background, and the direction to where 

our research is heading to. It describes the existing state of research in the computer-assisted language 

learning (CALL) field. We show some works of research that emphasize about how mobile and web 

technology could play a huge role in improving students’ learning experience, and also how we set the 

direction to propose and develop the web-based learning platform, which utilizes a variety of natural 

language processing techniques that focuses on the use of large language models. The proposed platform 

would provide a chat platform with translation support for users to communicate with each other using 

either Japanese or English, automatically generate practice questions to reduce the work required by 

teachers, and also automatically score the student’s answers to provide immediate feedback for self-practice. 

Based on this direction, a series of experimentations is conducted to implement, analyze, and evaluate 

existing machine learning (ML) and natural language processing (NLP) techniques and methodologies to 

find out the ones that suit our requirements, which then are used to build the platform. 

Our research starts off by looking for the right method to perform morphological analysis of 

Japanese text documents for our case (Chapter II). Unlike alphabetical languages, texts written in Japanese 

do not contain whitespaces to separate each word or phrase in a sentence. Furthermore, depending on the 

context, the same combination of characters can be separated (or tokenized) in multiple different ways. We 

review some existing methods for tokenizing Japanese texts and evaluate their performance on some ML 

tasks. In addition to this, instead of building one model for each language, recent advances in the NLP field 

show that it is possible to build a multilingual model. Such language models, if performing as expected, 

could reduce the time and effort in building a system than is required to handle more than one language, 

such as the ones often seen in the foreign language learning field. Following the previous experiment, we 

explore the applicability of such models for to process three languages, English, Japanese, and Indonesian, 

focusing on the XLM-RoBERTa model which is trained using texts from 100 languages (Chapter II). 

Using the knowledge we get from the previous experiments, the next one focuses on Japanese-

English neural machine translation (NMT) which, at later stages, will be incorporated to the learning 

platform we are building. In this experiment, we start by surveying existing works of research to get hold 

of the state of Japanese-English machine translation. Afterwards, we train our own NMT model based on 
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the Transformers architecture and fine-tuned the model for chat translation, which is the focus of the 

platform we are building for EFL learners and compare its performance with existing open-sourced models 

that is able to translate sentences from Japanese to English (Chapter III). In addition, to improving the 

field by focusing on the anaphoric zero-pronoun phenomenon which is prevalent in Japanese sentences, 

especially in a conversational environment. Our work proposes and develops a tool called the Zero-Pronoun 

Annotation Support Tool (0Past) to make it easier for researchers and practitioners to build a specialized 

evaluation set to measure the performance of a Japanese-English NMT model in solving the anaphoric zero-

pronoun. Using the tool, we annotate a set of Japanese-English parallel text dialogue corpus and use it to 

re-evaluate several NMT models. Furthermore, we also show that the annotated data can also be helpful to 

train a zero-pronoun sentence classifier that could detect whether a sentence written in Japanese contains 

the anaphoric zero-pronoun phenomenon or not. 

After the previous experiments related to potential NLP techniques and tools which can be used 

to build a computer-assisted language learning, we conducted preliminary surveys and interviews with 

Japanese university students regarding their view on text-based conversation, which is massively used, 

especially during remote work and study. Based on the insights we get from these surveys; we start 

designing and developing the language learning platform to enable Japanese student to better practice and 

improve their skill and confidence in communication using text in English (Chapter IV). We build the 

platform as a web-based tool so that it can be used by many users, both on laptop/PC and mobile devices. 

The frontend web application is built using VueJS, and the backend system is supported by Google Firebase 

for authentication and database, and Heroku in which we deploy our APIs that are written in Python, which 

mainly support processes related to text processing and ML model inference. Towards the end of our series 

of experiments, we conducted a usability test with actual users in a Japanese university, gather feedback, 

perform several feature improvements, and finally report the findings. In Chapter V, we describe some 

additional experiments that are conducted in addition to the main experiments previously mentioned. 
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Chapter II  Cross-Lingual Natural 
Language Processing 

 

This section is mainly divided into two parts in which, firstly, we focus on Japanese tokenizers, 

and, secondly, the applicability of XLM-RoBERTa in processing cross-lingual texts with zero-shot 

transfer learning. 

2.1  Tokenization for Japanese Texts 

In many languages, words are often considered as the basic unit of texts. Several works of 

research also show that when using n-gram language models, word n-grams are relatively better than 

character n-grams to convert texts into tokens when building a text classification model [17] [18]. 

Japanese texts pose different challenges for a machine learning algorithm to perform well. Sentences 

in Japanese contain no whitespace between words, so the common preprocessing phase to explicitly 

split words based on whitespaces could not be easily conducted. In addition, the combination of 

characters in a sentence could vary and may be ambiguous as they could have different meanings 

depending on the combinations. Many works of research have developed morphological analysis tools 

for Japanese language. Some of the popular tools for morphological analysis tools for Japanese are 

including MeCab [19], Sudachi [20], and SentencePiece [21].  

In this section, we focus on utilizing one of the many features provided by the previously 

mentioned tools which is the tokenizer for segmenting Japanese texts by words or sub-words. 

Furthermore, this research then implements the tokenizer as a preprocessing step towards building 

supervised sentiment-based text classification models with Term Frequency–Inverse Document 

Frequency (TF-IDF) vectorization. Regarding text classification tasks for Japanese texts, many recent 

works experiment with complex models using various deep learning approaches such as BERT [22] 

[23], Bidirectional LSTM-RNN [24], and Quasi-RNN and Transformer model [25], most are 

competing to achieve state-of-the-art performance. In our early work presented in this article, we aim 

to experiment with and report text classification results on baseline traditional algorithms with less 

computational cost and more interpretability. Two classifiers used in in this experiment are the 

Multinomial Naïve Bayes and Logistic Regression. Logistic Regression, which used to be the default 

choice for text classification, can be found used as a baseline linear model for Japanese text 

classification such as in [22] [26] [27]. Many researchers are also still exploring the potential and 

possibility of enhancing Multinomial Naïve Bayes’ ability as a classification method, such as in [28]. 

By using these two methods, we emphasize more on the tokenization tools, rather than the 

classification algorithms. In addition, to also provide reports on the performance of traditional machine 

learning algorithms which with its limitations could still perform well. The objectives of this 
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experiment are summarized as follows: 

a. Implement Japanese text tokenization using MeCab, Sudachi, and SentencePiece, then use 

the results to build models for binary sentiment-based text classification using TF-IDF with 

Multinomial Naïve Bayes and Logistic Regression, and 

b. Compare and report the performance results in terms of time and error percentages. 

2.1.1  Related Works 

MeCab, Sudachi, and SentencePiece as morphological analysis tools have been used in many 

works of research in natural language processing. Although it is not exactly a newly proposed tool (the 

last update on its GitHub repository 5  is version 0.996 in February 2013), MeCab is still used 

extensively as a word segmentation tool for preprocessing Japanese text in recent years. One example 

is the work by Zhang and LeCun [26], in which MeCab is used to segment texts in Japanese and 

Korean (with additional model in Korean language). Sudachi is another tool that mainly emphasizes 

the focus on continuous maintenance and feature richness, as it aims to support business use. It is also 

currently used by spaCy6, a well-known library in NLP, as a tool for their pretrained statistical model 

for Japanese. 

SentencePiece, on the other hand, is a tool for subword segmentation that uses a different 

approach. The authors describe SentencePiece as a language-independent subword tokenizer and 

detokenizer designed for Neural- based text processing [21]. While using a different approach with 

focus on providing a method to support language-independent multilingual text processing, its 

performance is shown to be effective for various tasks, such as English-Japanese neural machine 

translation [21], Japanese news text classification [23], and sentiment analysis in Japanese [22]. 

However, even though many articles have shown the ability of each tools to be utilized for various 

tasks in natural language processing, works that provide a hand-in-hand comparison between the 

features provided by the tools in the same environment and configurations are still hard to find. 

2.1.2  Dataset 

Our study is based on the Japanese Rakuten product review binary sentiment dataset provided 

in [26]. The datasets (both train and test set), which are available as CSV files, consist of three columns 

supposedly the binary sentiment label, review title, and review text, with examples such as the 

followings: 

• Label: 1 (negative) 

Review Title: 臭い 

Review Text: 余りにも、匂いがきつく安物み たいです。¥¥n 安いから仕方ないか
な? 

 
5 http://taku910.github.io/mecab/  
6 https://spacy.io  

http://taku910.github.io/mecab/
https://spacy.io/


 7 

• Label: 2 (positive) 

Review Title: 早いし安い 

Review Text: 毎回利用しています。納品が早 いし何よりお安く大変便利です。ま
た利用します。 

We use the binary sentiment label and review text and we randomly sampled 10% of the 

provided training and testing data and only used the sampled 10% of the total data in our experiments, 

that is 340,000 reviews for training and 40,000 reviews for testing as we aim to experiment with many 

configurations in a limited setting. 

2.1.3  System Specification 

The experiments are conducted by using Python 3.7 and Jupyter Notebook, running on an 

Ubuntu virtual machine provided by Google Compute Engine, using a machine type c2-standard-4 

with 4 vCPUs and 16 GB memory. However, it is also possible to run all of the experiments on Google 

Colaboratory. For the tokenization tools, we use the available MeCab (mecab- python3 1.0.3), Sudachi 

(SudachiPy 0.5.1), and SentencePiece (sentencepiece 0.1.94) packages available via the Python 

Package Index (PyPI)7 . As for the TF- IDF vectorizer, Multinomial Naïve Bayes classifier, and 

Logistic Regression classifier, we used packages provided by Scikit-learn8. 

2.1.4  Methods 

After preparing our environment specifications as previously described, we could then proceed 

to conduct our experiments. The overall flow of our experiments can be seen in Fig. 1. After the 

original Rakuten binary dataset is downloaded, firstly, we randomly sampled ten percent of the 

provided train and test data, resulting in a total of 340,000 train data and 40,000 test data. We then 

proceed to train a SentencePiece (SP) model based on the sampled train data, setting the vocab_size 

parameter as 32,000. We initially chose 32,000 based on the result shown in experiments in a previous 

work [23]. 

Unlike SentencePiece, Sudachi has its own dictionary with different sizes and MeCab can be 

integrated with various existing dictionaries in order to perform tokenization, so there is no need for 

more pre-training. We use Sudachi’s core dictionary for surface-form tokenization using Sudachi, and 

we use the unidic-lite dictionary for tokenization with MeCab. Furthermore, before building our 

classification model, we experimented with few randomly selected reviews to get a glimpse of the 

tokenization results by the three different tokenizers. 

After that, using each tokenizer, we vectorize all the reviews in the training set to create matrices 

of TF-IDF values which will then be used to build our classification model. In this process, we also 

calculated the time spent by each tokenizer to process various number of train data into their TF-IDF 

 
7 https://pypi.org  
8 https://scikit-learn.org/stable/  

https://pypi.org/
https://scikit-learn.org/stable/
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values. We then use the vectorized data to build two classification models for each tokenizer, one using 

the Multinomial Naïve Bayes (MNB) classifier, and another one using the Logistic Regression (LR) 

classifier. Finally, we test our models to classify reviews in the test set and evaluate the error 

percentages. 

 

 
Fig. 1 Flowchart of the experiment 

2.1.5  Tokenization Result 

We selected several review texts from the train and test set, then try to segment the words or 

subwords in order to experiment with each tokenizer. Vocab_size=32,000 is used for the SentencePiece 

model. Some parts of review texts along with their tokenization results are as can be seen in Table 1. 

Table 1 Examples of tokenization result using each tokenizer 

1 

Original “自転車通勤用に購入。サックス を選びましたが、...” 

MeCab ['自転', '車', '通勤', '用', 'に', '購入', '。', 'サックス', 'を', '選び', 'まし', 'た', 'が', ...] 

Sudachi ['自転車', '通勤用', 'に', '購入', '。', 'サックス', 'を', '選び', 'まし', 'た', 'が', ...] 

SentencePiece ['▁', '自転車通勤', '用に購入', '。', 'サックス', 'を選びましたが', ...] 

2 

Original “かわいいです(*^。^*)¥¥n パソコン...” 

MeCab ['かわいい', 'です', '(', '*^。^*)¥¥', 'n', 'パソコン', ...] 
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Sudachi ['かわいい', 'です', '(*^。^*)', '¥¥', 'n', 'パソコン', ...] 

SentencePiece ['▁', 'かわいいです', '(*^。^*)', '¥¥', 'n', 'パソコン', ...] 

 

The examples provided above are randomly selected and might not be fully representative to 

showcase the full capabilities of each tokenizer, however, some general similarities and differences 

can be observed. Compared to MeCab and Sudachi, tokens generated by SentencePiece are not based 

on any formal dictionary, so there are words or subwords that does not match formal Japanese 

dictionary, for example the token “ 便利ですね ” (“benridesune”) which is usually segmented into 

three words (“benri”, “desu”, and “ne”) but treated as one token. Moreover, although tokens generated 

by MeCab and Sudachi are generally similar, there are some characters that are treated different 

depending on the context they are in. For example, the words “自転車通勤用” and the combination 

of characters comprising the emoji “(*^。^*)”, are segmented differently in MeCab and Sudachi. 

Sudachi could divide the characters into [“自転車”(bicycle), “通勤用”(for commuting)] and treat the 

whole emoji as one union, while MeCab further separate the combination into [“自転”, “車”, “通勤”, 

“用”] and [“(“, “*^。^*)¥¥”]. 

2.1.6  Elapsed Time for Vectorization Using TF-IDF 

We then proceed to use each tokenizer to vectorize the all texts in our train data (340,000 review 

texts) using TF- IDF and calculate the time elapsed. As can be seen in Table 2, SentencePiece is the 

fastest while MeCab is only slightly slower, and Sudachi needs the longest time. This might be caused 

by Sudachi’s focus in providing high quality segmentation based on its continuously updated rules and 

dictionary that enable it to divide words as can be seen in the previous paragraph. 

Table 2 Elapsed time to vectorize TF-IDF values 

Tokenizer Elapsed Time (seconds) 

MeCab 34.65 

Sudachi 1533.58 

SentencePiece 25.84 

 

2.1.7  Text Classification Model Performance 

After observing the tokens generated by each tokenizer and calculated the time elapsed to 

vectorize TF-IDF values, we proceed to use the TF-IDF values generated by each tokenizer and train 

two models using Logistic Regression (LR) and Multinomial Naïve Bayes (MNB). We could observe 

the effect of each tokenizer, with varying tokenization approaches and time elapsed to generate the 

TF-IDF values, on the classification performances in Table 3. 

In our experiment using linear model such as Logistic Regression, and also Multinomial Naïve 

Bayes, with TF- IDF vectorizer, the combination of SentencePiece with Logistic Regression 

outperforms the others with 6.54 error percentage on the training set and 8.02 error percentage on the 
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testing set. We can see that even though the segmentation results by SentencePiece are quite different 

with the other tokenizers’ results, it seems to work well on a linear classifier to solve binary 

classification problem. Another finding is that in our task, even though Sudachi, with its ‘surface form’ 

tokenization, could perform relatively better word segmentation, the resulting classification model 

could perform only slightly better than MeCab, despite taking the longest elapsed time in the 

vectorization phase. 

Table 3 Classification error percentages 

Tokenizer Classifier Error Train (340,000) Error Test (40,000) 

MeCab Logistic Regression 8.52 9.63 

Sudachi Logistic Regression 8.5 9.59 

SentencePiece Logistic Regression 6.54 8.02 

MeCab Multinomial Naïve Bayes 11.24 12.52 

Sudachi Multinomial Naïve Bayes 11.04 12.42 

SentencePiece Multinomial Naïve Bayes 8.28 8.9 

 

Furthermore, using the best performing model in Table 2 (Logistic Regression with 

SentencePiece), we then perform a hyperparameter tuning process for Logistic Regression using grid 

search and repeated stratified k-fold cross validator from Scikit-learn. Table 3 shows the error 

percentages of our final model (train error: 6.54, test error: 8.02) using the following hyperparameters 

on the Logistic Regression classifier: C=10, penalty=’l2’, solver=’lbfgs’. 

Table 4 Error percentages after hyperparameter tuning 

Tokenizer Classifier Error Train Error Test 

SentencePiece Logistic Regression 5.56 7.78 

 

2.1.8  Conclusion 

This experiment reports the results of an evaluation of three popular tokenization tools, MeCab, 

Sudachi, and SentencePiece, for processing Japanese texts. The resulting tokens are then used to train 

text classification models using TF-IDF with Logistic Regression and Multinomial Naïve Bayes. We 

found that the generated tokens from Sudachi are more likely to match dictionary results and common 

words understood by human, however, MeCab and SentencePiece are significantly faster. Moreover, 

even though tokens generated by SentencePiece are limited to its training data and might not match 

common dictionary results, they perform better for our dataset, which is a binary sentiment-based text 

classification task. Finally, the combination of SentencePiece, TF-IDF, and Logistic Regression 

achieved the best performance with 5.56 training error percentage and 7.78 testing error percentage. 

2.2  Cross-Lingual Large Language Models (LLMs) 

Based on the experiment in the previous section, depending on the use case, SentencePiece can 
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be a great choice of tool for tokenizing Japanese texts. Additionally, since it is a language-agnostic 

tokenizer, it can also be used for various other languages. In this experiment, we further explore the 

applicability of SentencePiece, along with increasingly large and inclusive Transformers-based 

language models in processing cross-lingual texts, that include Japanese. The reason being, while 

high-resource languages have achieved great successes in various tasks, other languages with limited 

data and computational resources are still left behind. This poses a challenge for researchers and 

practitioners in foreign language learning field, because even though many language models are 

publicly available for English, it is not the case for other languages which could be the native language 

of the learners. For example, it may not be that hard for Spanish speakers to understand English texts 

since the accuracy of machine translation models for Spanish to English is relatively good, one of the 

reasons is that the resources to build performant language models for both languages are relatively 

abundant, compared to, for example, speakers of the Sundanese language (a local language in 

Indonesia) who are trying to understand English texts. 

Cross-lingual transfer learning, where a high-resource language is used to train a downstream 

task model to improve the model's performance in another target language, shows a promising 

potential to tackle this setback. Many works of research have experimented and shown the potential 

benefit of using cross-lingual transfer in several NLP tasks, such as machine translation [29] [30], and 

named entity recognition [31] [32]. Recently, cross-lingual transfer learning has become an essential 

tool for improving performance in various downstream NLP tasks. This is also thanks to the recent 

advancements of massively multi-lingual Transformers pre-trained models, including mBERT [10], 

XLM [33], and the most recent one being XLM-RoBERTa (XLM-R) [34]. 

Even though the multi-lingual field has grown a lot, there are still some challenges. For example, 

previous works have reported that the quality of unsupervised cross-lingual word embedding is 

susceptible to the choice of language pairs and the comparability of the monolingual data [35], thus 

limiting the performance when the source and target language have different linguistic structures (e.g., 

English and Japanese) [36]. XLM-R is trained using 100 languages globally and achieved SOTA 

results in various multi-lingual NLP tasks such as the XNLI, Named Entity Recognition, Cross-lingual 

question answering, and the GLUE benchmark [34]. However, it reports only the performance 

evaluation for some of the languages used during pretraining such as English, French, Swahili, and 

Urdu. 

This experiment explores the XLM-R base pre-trained model's capability for cross-lingual 

transfer learning encompassing English, Japanese, and Indonesian. We compare the performance with 

models from previous works, evaluate zero-shot transfer learning capability, and fine-tune mono- and 

multi-lingual models in a supervised manner for comparison purposes. Results show that both fine-

tuning and zero-shot transfer learning from English to Japanese and Indonesian for a downstream task; 

in this case, binary sentiment classification, using XLM-R, yields promising results. All experiments 
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are conducted using Google Colaboratory. We also report the full specifications and hyperparameters 

used in our experiments for reproducibility and provide an overview of the applicability of using 

XLM-R for zero- shot transfer learning within a limited amount of data and computational resources. 

2.2.1  Related Works 

As a massively multi-lingual Transformers (MMT) model, XLM-R [34] is a robustly trained 

RoBERTa, exposed to a much larger multi-lingual corpus than mBERT. It is trained on the 

CommonCrawl-100 data of 100 languages. There are 88 languages in the intersection of XLM-R’s 

and mBERT’s corpora; for some languages (e.g., Kiswahili), XLM-R’s monolingual data are several 

orders of magnitude larger than with mBERT. There are many methods for performing cross-lingual 

transfer based on MMTs, some of which are fine-tuning [37] and zero- shot transfer learning [38] [32]. 

The common thread is that data in a high-resource source language can be used to improve 

performance on a low-resource target language. 

Even though XLM-R is pre-trained using 100 languages, investigations regarding the 

applicability of XLM-R for downstream tasks in some languages with less resource than English, such 

as Japanese and Indonesian, with thorough experiments and reproducible results are still limited. 

Several works have tried to implement cross- lingual transfer learning using several Japanese and 

Indonesian text classification models. For Japanese, previous works have shown the capability of 

XLM-R for Japanese for dependency parsing [39] and named entity recognition [40], but no thorough 

comparison for cross-lingual transfer learning (fine-tuned and zero-shot) for sentiment classification 

are provided. In the Multi-lingual Amazon Review Corpus [41] in which Japanese is one of the 

languages of the corpus, the authors provided baseline sentiment classification performance using 

mBERT, but performance using XLM- R has not been reported. For Indonesian, previous works have 

shown the capability of using BERT and XLM-R for various tasks including sentiment classification 

[42] [43], however, the results are mainly focused on building powerful monolingual models for 

Indonesian. 

Furthermore, unlike English, Japanese texts contain no whitespace and there are various ways 

to split sentences into words, with each split could end in a different meaning and nuance. In order to 

tackle this problem, a recent work proposed a language-independent subword tokenizer and 

detokenizer designed for neural-based text processing, named SentencePiece [21]. Its performance is 

shown to be effective for various tasks involving language pairs with different character sets, such as 

English- Japanese neural machine translation [21] and sentiment analysis in Japanese [22]. It is also 

utilized by state-of- the-art cross-lingual models such as XLM-R, which is the focus of our current 

research. 

2.2.2  Dataset 

We gathered binary sentiment datasets from several sources and put shorthand nicknames on 

each dataset to be addressed in the following sections. 



 13 

1. AmazonEN: English Amazon product review sentiment dataset from The Multi-lingual 

Amazon Reviews Corpus [41]. We use 160,000 data for fine- tuning. 4,000 data for evaluation. 

2. AmazonJA: Japanese Amazon product review sentiment dataset from The Multi-lingual 

Amazon Reviews Corpus [41]. We use 160,000 data for fine- tuning. 4,000 data for evaluation. 

3. RakutenJA: Japanese Rakuten product review binary sentiment dataset from [26]. We use 

400,000 data for evaluation. 

4. IndolemID: Indonesian Twitter and hotel review sentiment dataset from IndoLEM dataset 

[43]. We use 5,048 data for evaluation. 

5. SmsaID: Indonesian multi-platform review sentiment dataset from SmSA dataset [44]. We 

use 1,129 data for evaluation. 

For each dataset, we use the review body/text as the input and the sentiment (0 for negative and 1 for 

positive) as the classification label. 

2.2.3  Experimental Setup 

In this experiment, we use the free version of Google Colab with GPU for all our experiments. 

Due to the dynamic GPU allocation by Google Colab, two GPU types are used in our experiment: 

Tesla T4 and Tesla P100-PCIE-16GB. Review sentiments gathered from AmazonEN and AmazonJA 

are rated as a 5-star rating. Following the original paper's practice [41], we converted the 1- and 2-

stars rating as negative the 4- and 5-stars rating as positive reviews, we omit the 3-stars rating. 

Indonesian review data gathered from SmsaID initially contains three classes, which are positive, 

negative, and neutral; similarly, we omit the neutral class in this experiment. 

Furthermore, to provide an equal comparison of our models' performance, we use similar 

metrics used in the sources of each dataset. Specifically, we use the error percentage for AmazonEN, 

AmazonJA, RakutenJA, and the macro-averaged F1-score for SmsaID and IndolemID. Additionally, 

we report the hyper-parameters and the time needed for fine-tuning the models to provide a general 

overview of the applicability and resource needed by the readers to reproduce the results of our 

experiments. We divide the experiments into two scenarios: 

• Fine-tuned supervised learning 

Fine-tune the XLM-RoBERTaBASE pre-trained model using AmazonEN, AmazonJA, and the 

combination of English and Japanese Amazon reviews (AmazonENJA), then evaluate the 

models in monolingual and multi-lingual settings. 

• Zero-shot transfer learning 

Use the fine-tuned model using AmazonEN to evaluate zero-shot cross-lingual transfer 

learning capability in AmazonJA, RakutenJA, SmsaID, and IndolemID datasets. 

2.2.4  Results: Fine-Tuned Supervised Learning and Zero-shot Transfer Learning 

Firstly, this section reports the result of fine-tuning the XLM-R model. We fine-tuned the xlm-

roberta-base pre-trained model from the HuggingFace transformers library, three times, using 
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AmazonEN, AmazonJA, and AmazonENJA. For AmazonEN and AmazonJA, our final models are fine- 

tuned using the linear scheduler with warmup, 4 epochs, batch size=32, optimizer=AdamW, and 

learning rate=2e- 5. For AmazonENJA, the final model uses the same above parameters but only with 

2 epochs. Table 5 shows the GPU and averaged elapsed time for each epoch in the fine-tuning process. 

Table 5 Specification and elapsed time for fine-tuning XLM-R 

Training Data GPU No. of Epoch(s) Avg. Elapsed Time per Epoch 

AmazonEN Tesla T4 4 33 minutes 5 seconds 

AmazonJA Tesla P100-PCIE-16GB 4 17 minutes 31 seconds 

AmazonENJA Tesla P100-PCIE-16GB 2 35 minutes 57 seconds 

 

After fine-tuning three models in the previous step, we evaluate each of the fine-tuned models 

for supervised learning performance on the exact language from which the model is fine-tuned. We 

calculate the error percentage for the model prediction on test data and compare the results with a 

baseline model trained using mBERT, as displayed in Table 6. It can be seen that XLM-R outperforms 

mBERT in all three supervised models for binary sentiment classification in English and Japanese. 

There is no comparison from the baseline model for the multi-lingual model fine-tuned using 

AmazonEN and AmazonJA. However, it can be seen that it is possible to have a single bi-lingual model 

for both languages, eliminating the need to set up multiple models for every language. 

Table 6 Error percentage of the fully-supervised evaluation on the Multi-lingual Amazon Review 

Corpus. Results using mBERT are obtained from [41]. 

Model EN-only JA-only EN&JA 

mBERT 8.8 11.1 - 

XLM-RBASE 7.35 7.25 7.19 

 

Secondly, we use the fine-tuned models from the previous scenario to evaluate the applicability 

of zero- shot cross-lingual transfer learning from one language to the others. Table 7 shows the results 

(error percentage, lower is better) of the experiments conducted in this scenario using the multi-lingual 

Amazon and Japanese Rakuten data. Additionally, Table 8 reports the results (F-1 score, higher is 

better) using the multi-platform Indonesian sentiment datasets. 

Table 7 Error percentage of zero-shot cross-lingual transfer learning using XLM-RBASE in 

comparison to a zero-shot mBERT from English data [41] and Japanese data [22] 

Model AmazonJA RakutenJA 

Zero-shot mBERT 19.04 - 

Fully-supervised ULMFiT - 4.45 

XLM-RBASE w/ AmazonEN 11.12 13.09 
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XLM-RBASE w/ AmazonENJA 7.05 8.51 

 

Table 8 Macro-averaged F1-score of zero-shot cross-lingual transfer learning using XLM-RBASE for 

Indonesian 

Model IndolemID SmsaID 

Fully-supervised BERT 84.13 92.72 

Fully-supervised mBERT 76.58 84.14 

XLM-RBASE w/ AmazonEN 72.19 86.77 

XLM-RBASE w/ AmazonENJA 73.31 87.99 

 

On the Japanese product review from the Amazon dataset, in Table 3, our model achieves a 

better error percentage of 11.12. It is almost 8 points better than the original baseline model, which is 

also evaluated using zero-shot cross-lingual transfer learning from English to Japanese, using mBERT. 

On another Japanese dataset with more evaluation data (400,000 reviews), the Rakuten dataset, our 

model achieves a 13.09 error percentage with zero-shot from English. Furthermore, it achieves a much 

better score of 8.51 error percentage if we add a substantial 160,000 review data from AmazonJA when 

fine-tuning the model. Although they are from different platforms, product review data shares similar 

patterns. This result is still far from the SOTA result of the 4.45 error percentage achieved by previous 

work, in which the model is trained in a fully-supervised monolingual setting using BERT. 

For the Indonesian sentiment datasets, as also described in Table 8, we use two datasets with 

comparable results from different sources for evaluation purposes. Macro- averaged F1 score is used 

to evaluate the Indonesian datasets to follow previous works for comparison purposes. We 

experimented with zero-shot cross-lingual transfer learning using two models for classifying the 

Indonesian datasets; one is trained only with 160,000 English Amazon reviews, and another one 

containing English and Japanese Amazon reviews. In both Indonesian datasets, we can see a pattern 

of more data leads to better performance. Similar to prior research results [34], the model trained with 

multilingual data, in our case, Japanese and English review data, performs better. The XLM-RBASE w/ 

AmazonENJA model achieves a 73.31 F1-score on the IndolemID dataset, outperforming a previous 

model, trained with mBERT in a fully- supervised monolingual setting. Moreover, the same model 

achieves a better F1-score of 88 on the SmsaID dataset, outperforming another mBERT model trained 

in a fully-supervised monolingual setting. For both datasets, our model performance is still worse 

when compared to the SOTA model's result, as shown in Table 7 and Table 8. 

 Based on the results above, it is essential to note that the models used to compare RakutenJA, 

IndolemID, and SmsaID are trained in a fully-supervised approach using the same language with the 

target language. In contrast, our model, which is trained using AmazonEN, has never seen Japanese 

product reviews, and our models trained with AmazonEN and AmazonENJA have never seen 
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Indonesian review texts. Furthermore, the models compared in the previous tables are trained mainly 

by much bigger architectures with more epochs, which means training them will need much more 

computational resources and time. Our current experiments show the applicability of zero-shot cross- 

lingual transfer learning with less computational costs. 

2.2.5  Conclusion  

This section reports the results of experiments focusing on evaluating the applicability of cross-

lingual transfer learning using the XLM-R pre-trained model. We then compare the results with 

previous works to provide an overview of the zero-shot approach's capability using XLM-R to use a 

multi-lingual model for bilingual data instead of one model for one language. Based on the results, 

zero-shot cross-lingual transfer learning yields promising results using XLM-R. All experiments are 

performed using the free version of Google Colab. The models achieve the best result in one dataset 

and shows the applicability of cross-lingual transfer learning, considering that the models have not 

seen languages in the target dataset, it can outperform SOTA results in other datasets trained in a fully 

supervised approach. 
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Chapter III  Japanese-English Neural 
Machine Translation and Its Challenges 

 

3.1  Introduction to Japanese-English NMT and Anaphoric Zero-Pronoun  

In recent years, many studies in the deep learning and natural language processing fields have 
progressed toward enabling the building of high-performance neural machine translation (NMT) 
models, most notably the neural encoder-decoder models with attention [45] [3]. NMTs are a popular 
research field that is being applied in various forms of applied technologies to assist human 
communication. Many studies have achieved various translation milestones in various language 
directions, such as translation in low-resource languages [46] [47] [48]. In some language directions 
and domains, sentence-level translation has been considered similar to human translation [49]. 
However, document-level translation remains a challenging field, particularly in the context of chat 
translation, in which sentences are typically spoken language instead of written language, and contain 
many references to previous sentences. 

Fig. 2 An example of multilingual chat conversation supported by machine translation 

As technology continues advancing, communicating with people in different languages via chat 
messages has become a trivial task. Various companies worldwide are already providing multilingual 
chat translation services and products [50] [51] [52], as Fig. 2 illustrates. A challenge in translating 
chat messages is the anaphoric zero-pronoun phenomenon, in which pronouns are dropped or omitted 
in a sentence. This arises from pronouns such as subjects, objects, and possessive cases are often 
omitted from conversational sentences. The sentences in Table 9 were taken from the business scene 
dialog corpus [53], which contains parallel conversations in Japanese and English. This anaphoric 
zero-pronoun language is nonexclusive to Japanese. However, the surrounding words in a zero-
pronoun Japanese sentence typically do not have inflectional forms that change depending on the 
previously omitted pronoun [54], which makes the Japanese language one of the most difficult 
languages to resolve [55] [54]. 

The main contribution of this section is to provide a support tool for building zero-pronoun 
evaluation sets, namely 0Past, to assist in the evaluation of NMT models translate heavy pro-drop 
languages, such as Japanese. This section also reports two additional findings: (1) performance 
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comparison, in terms of BLEU score, between three NMT models to translate chat messages from 
Japanese to English demonstrating that specific evaluation sets for zero-pronoun sentences are 
required; and (2) two zero-pronoun evaluation sets labeled using the proposed support tool. 

Table 9 Example of conversation containing sentences with omitted pronouns 
Speaker Language Sentence 

Speaker #1 Japanese 私がそっちに行ってもいいと思っていたんですけど。 
English I was thinking I can go to your place though. 

Speaker #2 Japanese 大丈夫ですよ、近いですし。 
English It’s okay, it’s close. 

Speaker #1 Japanese じゃあ、明日の１０時半ごろ、お伺いしますね。 
English Okay, I will go to your place around ten thirty tomorrow. 

Speaker #2 Japanese はい、わかりました。 
English Okay, got it 

 

3.2  Related Works 

3.2.1  Japanese-English Neural Machine Translation with Transformers 

Progress in NMT has been rapidly advancing in recent years. The machines’ ability to translate 
certain language pairs at the sentence level, ignoring its contexts, is considered to perform 
competitively with human translation. Most state-of-the-art NMT models are based on the encoder-
decoder architecture [45]in which the encoder layers map the source sentence into word vectors, and 
the decoder layers produce the target sentence given the source sentences represented by its word 
vectors. This approach assumes a conditional independence of each sentence and then uses it to 
translate sentences from the source to the target language, ignoring both source- and target-side context 
sentences. As such, these systems optimize the negative log-likelihood of the sentences: 

𝑝𝑝�𝑦𝑦(𝑘𝑘)�𝑥𝑥(𝑘𝑘)� =  ∏ �𝑦𝑦𝑡𝑡
(𝑘𝑘)�𝑦𝑦<𝑡𝑡

(𝑘𝑘),𝑥𝑥(𝑘𝑘)�𝑛𝑛
𝑡𝑡=1             (1) 

where 𝑥𝑥(𝑘𝑘)  and 𝑦𝑦(𝑘𝑘)  are the k-th source and target training sentences, respectively, and 

𝑦𝑦𝑡𝑡
(𝑘𝑘)is the t-th token in 𝑦𝑦(𝑘𝑘) (Lopes, et al., 2020). 

Several studies have proposed the use of context-aware NMT approaches that integrate source- 

and target-side contexts [4] [26] [6]. Existing studies have shown that human translators clearly 

outperform NMT models when the translation of the target language must consider the contexts at the 

document level in Chinese-English translations [56] [57]. A previous study [58] conducted a 

systematic comparison of context-aware NMT methods using large datasets that included findings for 

anaphoric pronoun translation. However, it focused only on three language directions: English to 

French, German, and Brazilian Portuguese. Studies related to the evaluation and improvement of 

discourse translation in Japanese, which has their own challenges, still lack comparisons to other 

languages.  

3.2.2  Corpora for Discourse Translation in Japanese 
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Many of the publicly available parallel corpora for training a Japanese-English NMT model are 
constructed with sentences from written language, such as crawled documents from the web, patents 
[59], and scientific papers [60]. Only in recent years has more work started to shift focus to providing 
corpora for discourse translation in Japanese. One research paper [53] introduced a Japanese-English 
business conversation parallel corpus, the Business Scene Dialog (BSD) corpus. This corpus contains 
955 scenarios with 30,000 parallel sentences. It provides a publicly available parallel corpus for 
training and evaluating conversational NMT for Japanese to English but lacks an evaluation set for 
measuring the models’ capability to handle language-specific phenomena, such as anaphoric zero 
resolution. 

Another study [61] separately constructed a test set for evaluating zero-pronoun resolution in 

Japanese-English translations, which consists of four components: a current sentence, context, a 

correct translation, and an incorrect translation. This type of test set is particularly useful because it 

contains zero pronoun information; therefore, translation models must predict the correct antecedent 

based on the contexts in previous sentences inside one conversation. However, manually handcrafting 

them requires time and effort; thus, such sets are rare, particularly those publicly available. Our 

research aims to kickstart the development of support tools that can handle specific language 

phenomena to assist the evaluation of model performance in discourse translation and, ultimately, 

improve the overall capability of machine translation models. 

3.2.3  Support Tool for Building Evaluation Sets 

Human involvement in various machine translation (MT) tasks, such as the creation and 
annotation of parallel corpora and manual evaluation, is considered important, although time-
consuming and non-trivial. This is challenging for many reasons, one of which is that translation 
results produced by an NMT model are not guaranteed to be syntactically well-formed and easy to 
understand; thus, identifying the exact differences between translation candidates is challenging, 
particularly for a long or conversational document that contains many coreferences between sentences. 
Recently, the 2020 Conference on Machine Translation (WMT ‘20) developed a human intelligence 
task (HIT) tool [62] based on a previously developed Appraise toolkit [63] to evaluate a shared task in 
chat translation. This tool provides a UI specifically designed to facilitate translation evaluation for 
the human evaluator in assessing the WMT ’20 task submissions; however, although the tool provides 
modern UI for easier use, it focuses only on the human evaluation of machine translations, which are 
then compared to its machine counterparts to score the overall translation results without information 
regarding the model’s capability in handling language-specific phenomena, such as anaphoric zero 
pronouns. 

However, previous studies have proposed various tools to assist data annotation activities. 
WebAnno [64] presented a general-purpose web-based annotation tool for a wide range of linguistic 
annotations, such as parts-of-speech called entities, dependency parsing, and co-reference chain 
annotations. In another study, INCEpTION [65] provided an annotation platform for tasks, including 
interactive and semantic annotation. It is built based on the shortcomings of previous support tools, 
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including WebAnno’s split-screen mode, which was considered tedious for users. Such tools provide 
a wide range of features to support manual annotation, partially supported by pre-annotation features 
that leverage machine-learning methodologies. However, these tools were built for traditional NLP 
tasks tailored for document-like texts, such as parts-of-speech tagging and entity linking 
recommendations. 

Our proposed tool, the Zero-Pronoun Annotation Support Tool (0Past), was designed and built 

to handle chat annotation and evaluation. For example, it outlines the boundaries between each speech 

of a certain speaker, facilitating navigation between conversations. The tool focuses on the anaphoric 

zero-pronoun phenomenon, which is a challenging task in chat translation on several languages, 

particularly in Japanese. The proposed tool is built on existing tools, tailored to support the annotation 

and evaluation of chat messages, to improve the performance of NMT models in handling sentences 

with anaphoric zero-pronouns. The following sections describe the complete list of current and 

potential features of 0Past. 

3.3  Proposed Tool: Zero-Pronoun Annotation Support Tool (0Past) 

3.3.1  Features Overview 

 

Fig. 3 Use case diagram of 0Past 

The proposed tool was developed using VueJS9 and Buefy10 as the front-end frameworks and 

the Firebase Realtime Database 11  to store annotations. Fig. 3 shows a use-case diagram of the 

proposed tool with two types of users: a regular user (User) and an administrator (Admin). Regular 

users can perform three actions: upload a new parallel corpus, annotating an uploaded corpus, and 

download the annotation data. In turn, the administrator can perform two actions: manage the uploaded 

 
9 http://vuejs.org  
10 http://buefy.org  
11 https://firebase.google.com/docs/database  

http://vuejs.org/
http://buefy.org/
https://firebase.google.com/docs/database
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corpus inside the application and validate annotations made by the users, which can later be used to 

create the aggregated annotation of a certain dataset. Fig. 4 shows the About page, which explains the 

anaphoric zero-pronoun with three navigation items: Home, Upload, and About. Home is the page 

where users can select a corpus to annotate and download its annotation data, whereas Upload provides 

the interface to upload new corpora. The following paragraphs explain these features in detail. 

 
Fig. 4 About anaphoric zero-pronoun in 0Past 

The first feature allows users to upload parallel corpora that are currently unavailable in the 

system. A specific format is available for download that the corpus must follow. Thus, users must 

follow the correct format, and the system checks this before enabling the upload. The format used in 

the current version of 0Past follows the JSON format, as shown in Table 10. By default, the uploaded 

corpus can only be accessed by the uploader. However, users can also choose whether the uploaded 

corpus can be accessed publicly. If a corpus is set as public, then other users of 0Past can access it and 

provide their annotations, which are saved in each of the user’s account. 

Next is the primary feature of 0Past, which is users viewing uploaded parallel corpora and 

contributing to the community by providing their zero-pronoun annotations for the available corpora. 

Fig. 5 depicts the main user interface for annotation, where users can navigate between sentences and 

conversations within a dataset. The proposed tool provides a chat-like user interface and displays each 

conversation separately. While the user views a certain conversation, the messages within the 

conversation are displayed independently with a distinct color for the newest message. Users can see 

messages back and forth in the conversation with the speaker’s name displayed above along with the 

chat number, allowing them to have a sense of direction in terms of where they are in the conversation. 

Users can then annotate each sentence by selecting whether the zero-pronoun phenomenon exists in 

the corresponding sentence. 

Table 10 Content format inside a corpus file to be uploaded to 0Past 

JSON Format Example (data taken from BSD Dev Set) 
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[ 

    { 

        "id": string, 

        "tag":  string, 

        "title":  string, 

        "original_language":  string, 

        "conversation": [ 

            { 

                "no": number, 

                "en_speaker":  string, 

                "ja_speaker":  string, 

                "en_sentence":  string, 

                "ja_sentence":  string, 

            }, 

        ] 

    }, 

] 

[ 

    { 

        "id": "190315_E001_17", 

        "tag": "training", 

        "title": "Training: How to do 

research", 

        "original_language": "en", 

        "conversation": [ 

            { 

                "no": 1, 

                "en_speaker": "Mr. Ben 

Sherman", 

                "ja_speaker": "ベン  シャ
ーマンさん", 

                "en_sentence": "I will be 

teaching you how to conduct research today.", 

                "ja_sentence": "今日は調
査の進め方についてトレーニングします。" 

            }, 

        ] 

    }, 

] 

 

Fig. 5 Sentences and their annotations from the TCE corpus displayed in 0Past 

 Furthermore, in addition to labeling each sentence as a zero-pronoun or not, users can also 

annotate which of the previous sentences, if any, act as context sentences that decide the content of the 

omitted pronoun. As shown in Fig. 6, the current sentence is “そうですね、現在の販売高は 400 
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万ドル前後です。” and is labeled a zero-pronoun sentence. In English, this sentence is “Well, we are 

doing around four million in sales right now.” The omitted pronoun is “we,” however, knowing this 

by looking at this sentence only is difficult, even for humans. However, if we look at the previous 

sentences, some sentences provide contexts, thereby helping us decide that the omitted pronoun is 

indeed “we.” To provide this type of annotation, users can scroll to see the previous sentences and 

click on the previous sentences that provide the context. The clicked sentence is then colored green, 

as shown in Fig. 6. 

 

 
Fig. 6 Annotating a Previous Sentence with Context Related to the Current Zero-Pronoun Sentence 

The last feature enables users to download a parallel corpus that is already annotated with zero-

pronoun related labels, which can be either a corpus that has been labeled individually by the user or 

a corpus with aggregated annotations labeled by multiple 0Past users. For the corpus individually 

labeled by the user, the system checks and warns the user if unlabeled data can still be downloaded if 

the user intends to. For the corpus labeled by multiple 0Past users, the tool merges annotations from 

users that have been confirmed and aggregated manually by the administrators and allows the user to 

download the final aggregated corpus. Fig. 6 shows the two buttons to download the annotate; note 

that the aggregated annotation button is disabled when available data has not been provided by the 

administrators. There are several methods to use annotations from multiple users to derive a single 

ground-truth dataset, such as majority voting and averaging. We aim to address this issue and 

implement such methods for improving the crowdsourcing feature in the next version of 0Past; for 

example, by adding an automated aggregation function. 

3.3.2  Zero-Pronoun Annotation 

After developing the primary features of 0Past, we annotated each sentence from the BSD and 

TCE corpora with a zero-pronoun label. We performed this annotation process by navigating each 

sentence in each conversation and deciding whether a sentence written in Japanese contained an 
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omitted pronoun. If it did, the sentence was labeled “Zero-Pronoun” as a zero-pronoun sentence, 

“Nope” otherwise. Fig. 5 presents the user interface. Furthermore, if it is a zero-pronoun sentence, we 

look at the previous sentences in the same conversation and select the sentence(s) that provide context 

for the omitted pronoun. After the annotation processes were completed, we downloaded the 

annotations to be used as evaluation sets. The downloaded data are in JSON format, similar to the 

structure shown in Table 10, with two additional key fields: zeroPronoun (Boolean) and 

contextSentences (Array). The zeroPronoun field contains information on whether a sentence is a zero-

pronoun (true) or not (false). The context–sentence field is an array of numbers/integers containing 

the sentence number of the previous sentence(s) selected as context(s). Table 11 shows an example of 

zero-pronoun annotation on the downloaded evaluation set based on the BSD corpus development set. 

Table 11 Example of zero-pronoun annotation on a chat sentence 

An example of an annotated sentence 

{ 

  "en_sentence" : "Well, we are doing around four million in sales right now.", 

  "en_speaker" : "Mr. Ben Sherman", 

  "ja_sentence" : "そうですね、現在の販売高は 400万ドル前後です。", 

  "ja_speaker" : "ベン シャーマンさん", 

  "no" : 16, 

  "zeroPronoun" : true, 

  "contextSentences": [14] 

} 

 

3.4  Experiments 

This section describes the structure and results of the experiments. In Section 3.4.1, we describe 
the datasets used in the various stages of our experiments. For annotation and evaluation purposes, 
this study used two parallel corpora containing spoken conversational sentences. The first evaluation 
corpus was taken from the development set of the Business Scene Dialogue (BSD) corpus [53], which 
contains conversations occurring in the business domain. The second corpus is a collection of parallel 
sentences that we assembled, the Travel Conversation Exercise (TCE) corpus, which contains example 
conversations that typically occur when traveling to foreign countries. 

Previous sections show how we annotated two sets of Japanese-English parallel corpora using 
0Past. We created two evaluation sets to assess the MT model when translating sentences that contain 
anaphoric zero-pronouns, particularly from Japanese to English. In section 3.4.2, using the annotated 
evaluation set, we trained a model to classify the zero-pronoun label, given a pair of Japanese and 
English sentences, by fine-tuning the XLM-RoBERTa sequence classification model. This shows the 
potential for an improvement to 0Past, enabling the tool to provide pre-annotations that can assist 
annotators, particularly when handling a large number of sentences. 
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Section 3.4.3 shows how we train our own NMT model for Japanese-English language direction, 

and evaluate how it perform in comparison with two other publicly available models. In Section 3.4.4, 

we report our experiments on how we can leverage such zero-pronoun evaluation sets to assess the 

performance of MT models in a conversational setting. This study uses three NMT models to translate 

the above evaluation sets, that is, the development set of the BSD and TCE corpora. This experiment 

aims to compare the performance of existing NMT models when translating conversational sentences 

with and without zero-pronouns from Japanese to English. The results confirmed that zero-pronoun 

evaluation sets are essential for supporting the automated evaluation of NMT models. 

3.4.1  Data Preparation 

For annotation and evaluation purposes, this study used two parallel corpora containing 
conversational sentences in Japanese and English, which is particularly challenging in terms of the 
anaphoric zero-pronoun. The first corpus was developed from the Business Scene Dialogue (BSD) 
corpus. This development set contained 69 business conversations, with 2,051 parallel sentences. The 
second corpus was a Japanese-English parallel corpus assembled from our laboratory's archive, based 
on a previous study [66]. The assembled conversations were also used officially to teach English as a 
foreign language to Japanese university students. We refer to this as the Travel Conversation Exercise 
(TCE) corpus. It contained various sentences for teaching English as a second language to university 
students in Japan. There were 888 parallel sentences written in Japanese and English, all of which 
were sample conversations that may occur when a student travels abroad. Some of the conversation 
themes included (but not limited to) airports, hotel reservations, sightseeing, and emergencies. Owing 
to the limited number of sentences, we only used this corpus as an evaluation set and did not include 
them for training. Both corpora follow a similar format: a JSON array containing many conversations 
(written in Japanese and English) by two or more speakers. For each conversation, an array contains 
sentences in the same format. 

Additionally, to build the NMT model that used for comparison in Section 4.3, we used the 

training set of the BSD corpus to train our NMT model; however, as the number of sentences was 

limited (approximately 20,000 sentences), two additional parallel datasets from other sources were 

also used to pretrain the model. The first was the Japanese version of the ParaCrawl dataset and 

JParaCrawl corpus [67]. It is claimed to be the largest publicly available English-Japanese parallel 

corpus created by NTT Communication Science Laboratories12. It contains approximately 10 million 

parallel sentences and was created by web crawling and automatically aligning parallel sentences. 

JParaCrawl has been shown to include a wider range of domains than previously available English-

Japanese parallel datasets and suitable for training a neural translation model that works well as a 

pretrained model that can then be fine-tuned to specific domains. The second dataset was the Japanese 

English Subtitle Corpus (JESC) [68], which contains approximately 2.8 million sentences consisting 

 
12 http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/  

http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
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of sentences from movies and TV subtitles. Unlike JParaCrawl, JESC contains a conversational dialog 

extracted from movie subtitles and is claimed to be the largest freely available dataset of its kind. 

JESC13  was built by crawling subtitles from four free and open subtitle repositories, performing 

several preprocessing steps to convert them into a form suitable for alignment, and finally combining 

them into one dataset consisting of 29,368 unique English words and 87,833 unique Japanese words. 

All three datasets used in this study are publicly available for download from their websites. 

3.4.2  Zero Pronoun Sentence Classification for Pre-Annotation 

Using the evaluation sets that were previously labeled using 0Past, we conducted an additional 
experiment to explore the possibility of building a classification model to predict whether a pair of 
Japanese-English sentences contains an anaphoric zero-pronoun. This experiment aims to determine 
if we can use the model to provide an automated pre-annotation feature for a new parallel corpus, in 
which predicted labels can be updated manually by human annotators. The model was trained by fine-
tuning the pretrained XLM-RoBERTa [34] base model with a vocabulary size of 250,002 and a 
maximum length of 512. This experiment used XLM-R primarily because of its capability to handle 
cross-lingual sentences, public availability, and ease of use. First, we combined the two annotated 
evaluation sets, the BSD and TCE corpora, to build a collection of 2,939 pairs of parallel sentences, 
each with its zero-pronoun label. There were 1,762 pairs of sentences marked as zero-pronouns and 
1,177 pairs of sentences marked as non-zero-pronouns. The data were then split for training with a 
train-validation ratio of 80:20, and the model was trained for four epochs with a batch size of 32. 
AdamW was used as the optimizer, with a learning rate of 2e- 5 and epsilon of 1e-8. SentencePiece 
was also used by XLM-R to tokenize both Japanese and English sentences, eliminating the need to 
prepare a specialized tokenizer for each language. 

The training phase completed with an average of 32 seconds per epoch, and the trained model 
performed with 0.88 accuracy on the validation set, meaning that, given a pair of sentences in Japanese 
and English, the model can correctly predict whether most sentences contain an omitted pronoun. 
Table 12 shows some of the model’s predictions on the sampled pairs of sentences in the test set, and 
Table 13 shows its predictions on new sentence pairs (those that do not exist in either the BSD or TCE 
corpora). The combined dataset contained 1,762 zero-pronoun and 1,117 non-zero-pronoun sentences. 
This experiment, although early, shows another potential benefit by enabling the tool to provide 
automated pre-annotations on a newly uploaded corpus, reducing the efforts required for manual work 
but with satisfying results. 

Table 12 Zero-pronoun label prediction of sampled sentences from the test set 
No. Sentences Predicted 

Label 
True Label 

1 Japanese よかった。搭乗手続きをお願いします。 1 1 English Good. I’d like to check in. 

 
13 https://nlp.stanford.edu/projects/jesc/  

https://nlp.stanford.edu/projects/jesc/
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2 Japanese はい、こちらで承ります。 1 1 English OK. I can handle it for you. 

3 Japanese 航空券をお持ちですか？ 1 1 English May I see your ticket? 

4 Japanese はい、どうぞ。 0 0 English Here you are. 
 

Table 13 Zero-pronoun label prediction of newly created sentences 
No. Sentences Predicted 

Label 
True Label 

1 
Japanese そろそろ雨が降るでしょう。私は私の傘を

君に貸しますよ。 1 0 
English It is going to rain. I will lend you my umbrella. 

2 Japanese 明日は学校行きたいんですけど。 1 1 English But I want to go to school tomorrow. 

3 Japanese いいえ！ 0 0 English Don’t mind it! 

4 Japanese このりんごを食べていいのかな？ 1 0 English Is it okay to eat this apple? 
 

3.4.3  Training a Japanese-English NMT for Chat Translation 

We conduct experiments to show how to leverage such zero-pronoun evaluation sets to assess 

the machine translation model performance in a conversational setting. First, we describe the training 

process for building an NMT to translate conversational sentences from Japanese to English. Our 

model is based on sequence-to-sequence transformers [3]. Additionally, for comparison purposes and 

better reproducibility, we used two publicly available pretrained Japanese-English NMT models: the 

Opus-MT Japanese-English model14 [4], and the M2M100 model15 [69]. Unlike our model, these 

models have been extensively evaluated and trained using a large amount of data and more complex 

architectures. Finally, this experiment reports the translation performance of the three models for 

conversational sentences, which were previously annotated using 0Past, with and without zero-

pronouns. 

All experiments reported in this section were conducted using a PC with a single NVIDIA 

GeForce RTX 3070 GPU and an Intel(R) Core (TM) i9-10900 CPU with 32 GB of RAM. Owing to 

limited resources, a considerable gap in performance may exist, measured in the BLEU score, between 

our own model and state-of-the-art NMT models. This matches our objectives, which do not include 

building a state-of-the-art translation model, emphasizing the need for phenomenon-specific 

evaluation for MT and confirming the need for a support tool for building evaluation sets to better 

support the training and evaluation of future NMT models, focusing on those capable of better 

anaphoric zero pronoun resolution from Japanese to English. 

 
14 https://huggingface.co/Helsinki-NLP/opus-mt-ja-en 
15 https://huggingface.co/facebook/m2m100_418M  

https://huggingface.co/Helsinki-NLP/opus-mt-ja-en
https://huggingface.co/facebook/m2m100_418M
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Our model was based on a transformer model [3]. After experimenting with several 

hyperparameter combinations [70] [71], we adjusted parameters to fit these limitations. Initially, we 

trained the models with 16 epochs; however, we gradually reduced the epochs after observing that the 

model performance did not significantly improve on the test set. The final models were trained with 8 

epochs using an encoder/decoder with three and six layers. The model uses an embedding size and 

feedforward embedding size of 512 with 8 attention heads. For the optimizer, the model was trained 

using Adam, learning rate was set to 0.0001, and the betas were 0.9 and 0.98, and epsilon was − 1e-9. 

SentencePiece [21] was tokenized both English and Japanese sentences with a vocabulary size of 

32,000. 

After training our model, we measured its performance on the BSD and TCE datasets using 

BLEU scores [72]. The experiments trained several models using three and six encoder-decoder layers 

and tried several combinations of training datasets, including JParaCrawl only, JParaCrawl+JESC, and 

JParaCrawl+JESC+BSD corpora training sets along with their backtranslations. Table 14 shows that 

adding the BSD training set containing approximately 20,000 sentences to the two larger corpora, 

JParaCrawl and JESC, significantly improved performance. The best performance on the BSD corpus 

development set was achieved by a combination of three encoder-decoder layers with the JParaCrawl, 

JESC, and BSD corpus training set and its backtranslations with a BLEU score of 10.2. In summary, 

we call this model “our final model” in subsequent sections and subsections. 

Table 14 NMT model training performance on BSD corpus development set 
No. of Encoder 
and Decoder 
Layers 

Training Data BLEU 
Score on 
BSD Dev. 
Set 

3 layers 
JParaCrawl 7.2 
JParaCrawl  JESC 5.5 
JParaCrawl  JESC  BSD Training Set+back-translation 10.2 

6 layers 
JParaCrawl 5.1 
JParaCrawl  JESC 4.6 
JParaCrawl  JESC  BSD Training Set+back-translation 8.5 

We then compared the model’s performance with the M2M100 and Opus-MT Japanese to 
English model to translate the BSD and TCE corpora. Table 15 compares the BLEU scores, which are 
the averaged results from several runs with different random seeds. Evidently, for both datasets, the 
BSD and TCE corpora, the Opus-MT model for the Japanese-English translation direction achieved 
the best BLEU score. This is possibly because, compared to our final model, the Opus-MT model was 
trained using a larger dataset and architecture; thus, the BLEU score is better, but the inference time 
is longer. Furthermore, M2M100 is a huge cross-lingual language that can translate various language 
directions. In contrast, the Opus-MT model we used was trained specifically for Japanese to English, 
thereby dropping the BLEU score for M2M100 in this direction and increasing the inference time 
owing to the larger size of the model. 
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Table 15 Performance comparison between our final model, Opus-MT and M2M100 on BSD 

development set and TCE corpora 
Corpus Model BLEU Score Elapsed Time for Inference 

BSD Corpus 
Development Set (2,051 
sentences) 

Our final model 10.2 2 m 14 s 
Opus-MT (Ja-En) 13 17 m 3 s 
M2M100 9.5 40 m 5 s 

TCE Corpus (888 
sentences) 

Our final model 9.7 0 m 42 s 
Opus-MT (Ja-En) 23.8 4 m 34 s 
M2M100 11.9 11 m 55 s 

 

3.4.4  Results 

In addition to measuring the BLEU score and time elapsed during inference, we manually 
examined some of the translated sentences using the three models. The first sentence in Table 16 is an 
example sentence without omitted pronouns. All three models can correctly predict the pronoun, as 
stated clearly in the original sentence; however, the Opus-MT model, which is trained specifically 
with Japanese-English data and a larger architecture than our model, provided the best result. This 
matches the BLEU score results from the previous subsection, which confirm that Opus-MT performs 
better than the other models. However, in the second example, where several pronouns are omitted, 
our model could translate and predict the translation well, particularly when compared with the 
M2M100 model. Furthermore, while both sentences provided by Opus-MT and our model translates 
correctly, the Opus-MT added a pronoun “you” that does not exist in the reference. 

Table 16 Sentences with and without zero-pronoun translated using our model, Opus-MT, and 

M2M100 
Non-Zero-Pronoun Sentence 
Japanese (Original) 君はラーメンとお寿司、どっちのほうがすきですか？ 
English (Reference) Which one do you like, ramen or sushi? 
English (Our Model) Which sushi are you better? 
English (Opus-MT) Which do you like better, ramen or sushi? 
English (M2M100) Raman and sushi, which of them do you like? 
Zero-Pronoun Sentence 
Japanese (Original) 一緒に来れてよかった。見込み客との長い関係を築くと思う。 
English (Reference) I am glad to come here together. I think we will build a long-lasting 

relationship with potential customers 
English (Our Model) I am glad to be here. I think we will build a long relationship with 

potential customer. 
English (Opus-MT) I'm glad I came with you. I think we'll have a long relationship with 

potential customers. 
English (M2M100) I am very happy to have a long relationship with potential customers. 

 
The results in Table 16 also support the claims made by previous studies [56] [57] [73], in that 

merely comparing words and characters in translated sentences and their references is insufficient to 
evaluate MT performance in discourse. An NMT model may perform better in translating an entire 
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sentence to mispredict or even completely miss the omitted pronoun in the original sentence. This also 
shows that training an NMT model by looking at isolated sentences independently without context 
could result in poor performance for conversational sentences, even for huge transformer-based 
models. 

As explained in Section 3, this research annotates each sentence in the BSD (development set) 
and TCE corpora with a zero-pronoun label using 0Past. The BSD corpus contains 1,195 sentences 
annotated with the zero-pronoun label, whereas the TCE corpus contains 567 sentences annotated with 
the zero-pronoun label. We separated the translation results of sentences with and without zero-
pronouns and calculated the BLEU scores of the three NMT models from the previous sections. Table 
17 shows the gap in the BLEU scores achieved by each model when translating sentences with and 
without the zero-pronoun phenomenon from the BSD corpus. Although M2M100 has the largest gap, 
2.4 points in the BLEU score, a similar trend is visible in the two other models, which shows that the 
score is smaller for zero-pronoun sentences. These results confirm that specialized evaluation sets are 
necessary to better measure NMT models’ performance for language-specific phenomena, particularly 
anaphoric zero-pronouns in Japanese, which is the focus of this research. The proposed tool is expected 
to support researchers and practitioners in building evaluation sets with better quality and quantity, 
with less time and effort. 

Table 17 Gaps in BLEU score in translating zero-pronoun sentences in the BSD corpus development 

set 

Model BLEU Score Gap Zero-Pronoun  Non-Zero-Pronoun 
Our final model 10.05 10.3 0.25 
Opus-MT 12.8 13.6 0.8 
M2M100 8.9 11.3 2.4 

 

3.4.5  Conclusion 

This study proposes a zero-pronoun annotation support tool called 0Past. The primary feature 
of the current 0Past is the annotation of parallel sentences with zero-pronoun information, given a set 
of sentences displayed in Japanese and English. To accomplish this, 0Past shows the sentences in a 
chat-like interface, enabling users to see past utterances inside a conversation to understand the context 
of the sentence being annotated. Additionally, this experiment created two new zero-pronoun 
evaluation sets: (1) a Japanese-English parallel corpus called the Travel Conversation Exercise (TCE) 
corpus, which contains 888 dialog sentences and their zero-pronoun annotations and (2) a zero-
pronoun-annotated dataset based on the BSD corpus. This experiment also built a binary classification 
model with the labeled BSD and TCE corpora to predict whether a sentence contains an omitted 
pronoun using the XLM-R cross-lingual model. Early results showed that the model achieves an 88% 
accuracy on the test set and an improvement that may provide automated pre-annotations, which can 
then be updated by human annotators. Furthermore, this experiment compares three NMT models in 
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translating conversational Japanese sentences into English that contain many omitted pronouns. The 
results confirm that these evaluation sets are essential to better measure the performance of NMT 
models for language-specific phenomena, particularly anaphoric zero-pronouns in Japanese. The 
proposed tool is expected to support researchers and practitioners in building evaluation sets with 
better quality and quantity, with less time and effort. 
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Chapter IV  A Language Learning Platform 
for Practicing Text-Based Conversation 

 

Based on the learnings from experiments in the previous sections, this section describes the 

methodologies and tools that are used to develop the chat-based platform to support second language 

(L2) acquisition of English, which is focused to support native (L1) Japanese learners. Firstly, this 

section aims to investigate the challenges faced by learners, mainly for intermediate learners to 

practice text-based conversations. Secondly, we then propose an interactive web-based software 

platform, with machine translation, to be used by learners for practicing text conversations in the form 

of chats and exercises for self-study. The resulting platform enables students to chat with their peers 

and teachers with Japanese to English translation support and conduct self-study via exercises. It also 

allows the teachers to guide the students by providing feedback regarding the exercise results. This 

feedback could then be used to improve NMT model evaluation. 

4.1  Related Works 

Since mobile technologies have been adopted worldwide, texting has become popular as an 

essential means of written communication. This is reflected in many aspects of our lives. Companies 

started adopting platforms, such as Slack, to facilitate more accessible communication between their 

employees, among other things. Texting is also a popular means of communication among school-

aged and college students worldwide, many of whom come from different first language (L1) 

backgrounds [74] [75], automatically, this includes English language learners (ELLs). Accordingly, 

many researchers and educators have tried integrating texting into language instruction and self-

regulated learning interventions to help second language (L2) students learn different aspects of 

language [76] [77]. On the other hand, it is argued [78] that translation could be an essential tool for 

language learning. As with the rise of texting as a way for people to communicate globally across 

countries and different languages, so does the use of various chat translation skills and tools. 

Incorporating translation could encourage the learner to search (flexibility) for the most appropriate 

words (accuracy) to convey what is meant (clarity), which are essential in foreign language learning. 

Despite this, many linguists and teachers perceive translation in foreign languages differently, 

making it a largely criticized and debated topic. One of the main reasons for this is that throughout the 

years, many studies can be found that have either completely agree or completely ignore the use of 

translation for teaching a foreign language. In recent years, however, there has been an increasing 

interest in revisiting the potential of using translation for foreign language learning. It is suggested 

that, when used properly, translation is a good tool in the English language learning course aimed at 

enhancement of students’ foreign language skills [79]. Learning gets meaningful via translation, and 
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better comprehension promotes foreign language proficiency [80]. The ability to translate gives 

foreign language learners a sense of accomplishment, so first, learners translate mentally to help them 

clarify ambiguous or unknown vocabulary meanings. If they fail to do so, they turn to online 

translating [81], which could provide guidance for active communication or understanding texts. 

However, current translation tools, such as Google Translate, are often detached from language 

learning or communication platforms. Users would need to go back and forth between different apps, 

causing the whole experience less seamless and integrated. 

4.2  Overview and System Architecture 

Our proposed system is a web-based platform that can be accessed using a range of devices, 

such as laptops and smartphones, as long as it has an internet connection. We call it Chappin, which 

stands for Chat Platform for Practicing English. 

4.2.1  System Architecture 

 

Fig. 7 Architecture of the proposed system 

We use Quasar16 to build the frontend of our proposed system. It is based on Vue.js 6 (version 

3) with the Composition API. Quasar components are responsive by default, making it easier for us to 

provide user interfaces for various device types and sizes. Most devices with an internet connection 

and a browser application could access the application with a responsive layout and interfaces tailored 

to various screen sizes. In the future, we could extend our application to be compiled as a mobile 

application, running on Android and iOS devices, using commands provided by the Quasar CLI. Our 

system uses the cloud services provided by Google Firebase7 for authentication and database. All the 

data the application uses is stored using the Firebase Real-Time Database, and email authentication is 

implemented using the Firebase Authentication. We use Python (version 3.9) to build the backend 

server, performing various pre-processing steps such as input normalization and tokenization, calling 

an external translation service (DeepL API17), calculating scores, and serving our Transformers-based 

 
16 https://quasar.dev  
17 https://www.deepl.com/docs-api  

https://quasar.dev/
https://www.deepl.com/docs-api
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neural translation model (JaEn). Fig. 7 shows the overall diagram of the system architecture of our 

proposed system. 

4.2.2  Application Feature and Design Flow 

In this paper, we report two main features of our proposed system: a chat feature with in-app 

auto-translation from Japanese to English and an exercise feature for self-practice and assessment. 

This section explains the design and flow of these features. First is the chat feature with in-app auto-

translation from Japanese to English. The motivation is to encourage the learners to text in English, 

but often it is hard to produce words. This is particularly interesting for intermediate learners who can 

understand while reading English but are stuck when writing English. We implement the DeepL 

translation tool for this, automatically translating any Japanese sentences to be sent into English. After 

the translated messages are sent, the users in the chatroom can still see the original message by clicking 

the “see original” button. Some popular services worldwide, such as Grab18, have used this feature to 

overcome the language and communication barrier between users of different languages. One typical 

case in a Japanese university is an activity involving both international and Japanese students. These 

activities could be an excellent chance for intermediate to advanced English learners to practice their 

English. However, not many are confident in their skill, even with text messages, and going back and 

forth between chat platforms and translation apps to send a chat message could be time-consuming. 

Providing a chat platform that provides in-app automatic translation could encourage them to be more 

active in using English. 

 

 
18 https://www.grab.com/  

https://www.grab.com/
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Fig. 8 Flowchart to score users answer 

The first feature enables the users to communicate with other users of the same system, which can be 

their learning peers, teachers, or any external party registered to the system. On the other hand, the 

second feature which contains self-practice and assessment enables the users to conduct conversation 

practice by themselves. Similar features can be found in other learning applications such as Duolingo; 

however, in our case, we focus mainly on conversation practice by providing a conversational scenario 

that could happen in real life in the form of text messages. Fig. 8 describes the flow of this conversation 

exercise feature. When the user starts the exercise feature, the app will fetch conversations from the 

database depending on the user level, then display them individually. After the user submits their 

answer corresponding to a particular question, the application will calculate the score and provide text 

feedback. Finally, after the user finishes a level (consisting of 5 conversations/questions), the answers, 

score, and level data are stored in the database. 

4.3  Implementation 

As described in the previous section, our system’s two main user-facing features are the chat 

feature with in-app auto-translation and the exercise feature for self-practice and assessment.  

4.3.1  User Chat Feature with In-App Translation 

Chatroom feature with in-app auto-translation aims to encourage active use of English in a 

conversation and enables the users to have real communication with others. Students can also create a 

chatroom to talk with the teacher. A sample use case for a language learning class in a Japanese 

university is an activity involving both English-speaking international students and Japanese students. 

These kinds of activity could be an excellent chance for intermediate to advanced English learners to 

practice their English. However, simply asking the students to communicate might not go smoothly as 

many learners are not confident in their skill. Even with existing translation tools, using a separate 

application/platform causes the student to go back and forth between chat platforms and translation 

apps which could be inconvenient. 

Fig. 9 shows the chat feature’s user interface with in-app auto-translation viewed on a mobile 

browser. As seen on the left screen, all chat messages are written in English. However, there is a “See 

Original Text” button in some chats. Chat balloons containing this button mean that the message is 

initially sent in Japanese; thus, if the readers (or sender) want to view the original message written in 

Japanese, they can. The original text is shown by replacing the English text, as shown on the right 

screen of Fig. 9. 
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Fig. 9 User interface of the chat feature with in-app translation 

4.3.2  Self-Exercise with Automated Question-Answer Generation and Feedback 

Next is the exercise feature aimed at self-practice of understanding and engaging in 

conversational English. This exercise feature is divided into two types of quizzes, both aiming to help 

students practice understanding text dialogs between several parties. The first type of exercise is a 

dialog translation exercise, and the second is a C-Test exercise. Both exercises in this feature 

automatically generate question-answer pairs given a parallel dataset of conversations and then use an 

automated scoring system for immediate feedback for the students, which can then be checked and 

corrected manually by the teachers for higher quality feedback.  

Fig. 10 depicts the user interface of the dialog translation exercise where a series of chats in 

English are displayed to the users, with one chat balloon written in Japanese. This exercise asks the 

users to translate the yellow chat balloon into English. This exercise is not just a simple sentence 

translation task because the users need to understand the conversation to get the context and write the 

correct translation. For example, in Japanese, there is the anaphoric zero-pronoun sentence in which 

the pronoun is not explicitly said in a sentence, however, when translating to English, users need to 
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insert the pronoun.  

 
Fig. 10 User interface of the translation exercise feature 

Choosing the correct pronoun requires the users to understand the context. In addition, there can be a 

guide translation above the answer input field, which uses an NMT model for translating sentences 

from English to Japanese, however, with limited performance. We trained the NMT model used for 

this purpose in the previous section. It is based on the sequence-to-sequence Transformers architecture 

with three layers of encoders-decoders and 8 attention heads. Using this guide translation, users can 

get a hint of what kind of English sentences they need to write but still think for themselves, as the 

translations are often not 100% accurate, and they cannot understand contexts. Within one level, there 

are five questions, each containing a particular conversation from a dataset.  

 
Fig. 11 Score feedback of the translation exercise answer 

After the users write their English sentences corresponding to the conversation in the yellow balloons, 

the user can press the submit button. Fig. 11 shows the immediate feedback provided by the application 
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to the users for the translation exercise answer, we use reference sentences from two sources. The first 

is the original English reference from the datasets used in the application, and the second is the 

sentence translation result using the DeepL translation API. In our experiment, we use two parallel 

datasets as the source of sentences. The first dataset is the Travel Conversation Exercise dataset, and 

the second is the Business Scene Dialog (BSD) Corpus [53]. Initially, the answer submitted by the 

user is then compared with the two references, and a score is calculated using the BLEU score. The 

text feedback will be displayed depending on the calculated BLEU score, for example, feedback that 

says, “Very Good!”. However, after we conducted user interviews and a further experiment on NMT 

evaluation metrics (described in Chapter V), we revisited Chappin and changed the scoring system to 

use COMET [82]. 

 
Fig. 12 User interface of the C-Test exercise on a desktop browser 

 

Fig. 13 Screen showing the score of a submitted answer on the C-Test exercise 

Fig. 12 shows the C-Test exercise, in which, similarly, a series of chats in English is displayed, 

but instead of translating, the users are asked to fill a blank part with a word/phrase. Similarly with the 
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translation exercise, the system will randomly choose one chat message from a conversation. However, 

here, we can set additional rules regarding the length of the selected sentence. By default, we set that 

the randomly selected chat message must have more than 4 words and there should be at least one 

word with 4 letters which will be the question. These default numbers are selected arbitrarily based on 

a preliminary user test with a few participants, but the proposed system allows teachers to adjust this 

number accordingly. The selected chat message will then be displayed in different color, and the 

selected word will be hidden (the question), as can be seen in Figure 12. Here, we use a simple string 

matching to check whether the word entered by the user matches the actual hidden word and then 

display the score as shown in Fig. 13. 

4.4  Usability Tests 

While we are developing the language learning platform explained previously, we conducted 

two separate user tests. The first one is conducted as a preliminary user test when the platform was not 

100% complete, and the second one is conducted after the platform development is completed. 

4.4.1  User Test: First Phase 

During this preliminary user test, Chappin only has the Chat Feature with In-App Translation 

and the Translation Exercise without automated question generation. For the immediate feedback for 

scoring students answer, it uses BLEU score. We deployed the application on a private server and 

asked two participants to conduct early user testing and get feedback. Both participants are graduate 

students with L1 Japanese who can read and write formal English (e.g. research papers) but are not 

used to using English for two-way conversations. The participants are willing to practice 

conversational English to prepare themselves as they will use it a lot when they start working in the 

industry after graduation. After using our proposed system for some time, we asked for feedback from 

these participants to measure the acceptance of our system, mainly focusing on the perceived ease of 

use and perceived usefulness aspects, which are well-known aspects for technology acceptance tests. 

Along with interviews, we asked the participants to rate both aspects on a scale of one to five, with 

one being very bad and five very good. On the perceived ease of use aspect, both participants rated 5, 

meaning that the application is perceived as easy to use. On the other hand, the participants rated 3 

and 4 for the perceived usefulness of the application. Overall, the application is perceived to be useful 

for English learners to practice text-based conversations. However, based on the feedback and 

discussion with the participants, some concerns need further analysis. 

There are two main concerns in this chat feature with in-app auto translation. The first one is 

the challenge for the machine to understand context, especially in chats. One sentence written in the 

source language can often be translated into different versions of sentences in the target language. This 

is especially important in text messages, where contexts are essential, and the contexts often exist in 

the previous chats. For example, the sentence 「来る前に食べたの？」 which means “did [pronoun] 

eat already?”, does not have a pronoun. In this sentence, the translation can be “did you eat before 
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coming?” or “did she eat before coming?” depending on the context. The second one is the risk of 

overusing the translation service if the students do not try to practice their English. However, while 

we need to conduct further experiments to improve the model to better understand contexts and 

observe how the users utilize the auto-translation feature, we argue that the current imperfection of 

translation models in understanding context can be a catalyst to encourage the users to try writing 

English by themselves. Since the translations provided by the machine are often not perfect and can 

lead to misinterpretation by the readers, the more advanced users might as well try their best to write 

the messages by themselves. 

4.4.2  User Test: Second Phase 

 In this next user test, the platform is finished and improved, also considering the feedback 

from the preliminary user test. During this test, the platform has the Chat Feature with In-App 

Translation and the Exercise Feature with two types of quizzes, the translation exercise and C-Test 

exercise. Firstly, we conducted a direct observation with three university students in Japan who are 

intermediate English learners. The setup is as follows: 

1. The direct observation experiments with each participant are conducted on a separate time, 

one by one. 

2. Firstly, the participants are given a preliminary questionnaire, asking about how they feel 

about text-based conversation in English. 

3. Next, we introduce them to the proposed system by explaining each feature without 

demonstrating the system because we want to know whether the user interfaces are easy to 

understand for the users or not. 

4. After the participants understand how the features should work and how they can start using 

the system, they are asked to freely use the system to exercise for a minimum of 10 minutes. 

During this time, we closely observe what the users are doing with our system and the users 

are asked to think aloud. The users are also allowed to ask questions if they are stuck with 

something. 

5. After the observation, the participants are asked to voice their opinion via an interview 

session which lasts around 10 minutes in average. 

6. Lastly, we asked the participants for their comments on the question and answers generated 

with ChatGPT and how the scoring of the translation exercise can be improved with COMET 

for the next version of our proposed system. 

In parallel, we also distributed Chappin to an English class consisting of 25 Japanese university 

students and gathered feedback using online forms. 

Our user test experiment with the proposed system indicates several key findings. Firstly, based 

on the preliminary survey, the students expressed a desire to practice text-based conversation but 

reported a lack of opportunities to do so. Being in an environment with only a few English speakers 
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makes it hard to engage with English conversations and chatting to strangers in online forums or chat 

platforms seems too daunting. From the observation of the users, the system was found to be easy to 

use, with users having no difficulties in navigating between pages and features within the system. 

Additionally, the convenience of being able to access the system through both personal computers and 

mobile devices was noted. On one hand, users preferred using PC screens due to the wider and clearer 

display, while on the other hand, the mobility of using smartphones was deemed useful for accessing 

the system outside of home. 

The self-assessment features platform, which provides immediate feedback on both exercises, 

are seen as an important part of the system. This is an advantage compared to traditional language 

classes, where students usually need to wait days or even weeks for teacher assessment to complete 

and check their own performance. However, it is crucial for the system to provide reliable scores, 

which can be challenging in language learning. For example, when scoring translations, there are times 

where the students translated correctly but using different words than the actual English sentence, 

leading to a low score given by the system. This might be not problematic for advanced English 

speaker because they could still be confident with their answers and understand that it is a limitation 

of the system. However, lower-level students who may not understand may feel discouraged despite 

their efforts. Lastly, based on the interviews, even though the proposed system is very useful, and they 

are looking forward to more of these tools integrated in classes, the role of teachers in language 

learning is still very important, especially for lower-level students. The participants explained that they 

can enjoy using this tool because they have reached a certain level in English, even so, ideally it would 

be best if there is still a teacher guiding them with a suitable program and curriculum, instead of blindly 

practicing by themselves. Additionally, a potential challenge was also identified with regards to student 

motivation. While students were initially excited about conducting both types of exercises in the 

proposed system, few of them found it monotonous after some time. The various questions generated 

by AI can be considered interesting and could potentially keep students motivated, we explore this 

possibility in Chapter 5, using ChatGPT. 

4.5  Conclusion 

 In this study, we proposed and developed a computer-assisted language learning platform, 

namely Chappin, to support Japanese intermediate English learners to practice text-based conversation 

which is a highly relevant skill in the global industry these days. The proposed system enables the user 

to conduct self-practices with automatically generated questions and get immediate feedback to 

conduct self-assessment, especially when they are outside classes and teacher’s support is limited. 

Based on the experiments, the proposed system is easy to use and considered to be useful for 

intermediate students to practice English.  

 

  



 42 

Chapter V  Additional Experiments 
 

This chapter describes some additional experiments that we conducted in addition to the main 

experiments explained in previous chapters. 

 

5.1  Data Collection for Improving NMT Evaluation 

As techniques for building neural machine translation systems improve, evaluating them has 

become more critical than ever. Currently, there is a lack of consensus and standardization concerning 

translation quality assessment— both human and machine—given the complicated cognitive, 

linguistic, social, cultural, and technical process this supposes [83]. Human evaluation techniques are 

still perceived to be more dependable than automated metrics. A recent technique for human evaluation 

is MQM [84], an elaborate error-based methodology for scoring output, typically carried out by skilled 

human annotators. Although the results of human metrics are often considered more reliable than those 

provided by automated metrics, it requires significant demands on time and resources and is hard to 

reproduce [85]. On the other hand, evaluation using automated metrics require less human effort; thus, 

more objective and less costly than human evaluation. 

One of the most popular metrics for evaluating machine translation performance is the Bilingual 

Evaluation Understudy (BLEU) [72], a precision measurement carried out at n-grams, indivisible 

language units. It employs a modified precision that considers the maximum number of each n-gram 

appearance in the reference translation and adds a brevity penalty to the measurement calculation. 

Many studies have also experimented with improving the original BLEU metrics, such as by 

implementing various smoothing techniques for sentence- level BLEU [86]. However, most automated 

metrics require reference translations. Since these metrics evaluate translation in relation to its 

similarity to the reference translations, we need more of them to get more reliable measurements of 

the actual quality of the translated sentences. In many cases, not enough of them are available, even 

though it is acknowledged that there is no single correct translation. 

5.1.1  Experimental Setup 

When Chappin, the proposed platform in described in the previous section, is used in a learning 

environment where a teacher (or teachers) exists, the teacher can check the students’ answers and 

manually assess the answers. This is considered essential in a learning platform since even though 

automated feedback can be quick and interactive, there are times when the assessment is not accurate. 

The teacher’s role is crucial in ensuring that the assessment is done correctly and providing guidance 

to the learners. Furthermore, the system will get the verified translations and update the parallel dataset 

in the database for translations that the teachers have already verified. Fig. 14 describes the flow of 

this process. After updating the dataset, for one Japanese sentence, there can be more than one English 
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translation. This can potentially improve the dataset to be used as an evaluation set of NMT models, 

especially for metrics like the BLEU score, which requires reference translations to be compared with 

the predicted translation. 

 
Fig. 14 Flowchart of updating the reference dataset with newly verified translation 

5.1.2  Results and Discussion 

We use some of the verified translation answers from the participants in this early user test and 

add them as a reference translation to the dataset. Table 18 shows an example with different BLEU 

score results when using the original parallel sentences and the updated sentences. Here, we use the 

sentence_bleu() function from nltk with a smoothing method 7, which is tailored for sentence-level 

BLEU, to calculate the score. The source and target sentence in the original parallel sentence is taken 

from the BSD corpus, and the answer is provided by one of the two early users in our experiment. The 

answer says, “There are more than 100 here”. However, using the original dataset, it only scores 20.423. 

This is not surprising because BLEU compares the word n-grams with the existing target sentence 

(references). In the updated parallel sentence, we added another target sentence that can be used as a 

reference for a correct translation, and the BLEU scores improved to 88.286. 

Table 18 Different BLEU score with newly added reference translations 

Original Parallel Sentence 

Source Sentence (Ja) 

BLEU 20.423 
“これで 100 以上あるよ” 

Target Sentence (En) 

“There are over a hundred here.” 



 44 

Answer (En) 

“There are more than 100 here.” 

Updated Parallel Sentences 

Source Sentence (Ja) 

BLEU 88.286 

“これで 100 以上あるよ” 

Target Sentences (En) 

“There are over a hundred here.” 

“With this, there are more than 100.”  new 

Answer (En) 

“There are more than 100 here.” 

 

5.2  Comparison of Various NMT Evaluation Metrics 

In MT, many traditional baseline metrics remain popular for evaluating MT systems due to their 

lightweight and fast computation [82]. However, as MT systems improve over time, commonly used 

metrics struggle to correlate with human judgment at the segment level and fail to evaluate the highest-

performing MT systems adequately, thus misleading system development with incorrect conclusions. 

Among these metrics, BLEU is often considered the de facto standard of MT evaluation metrics. In 

advanced translation, however, there are many cases in which the description of phrases differs but 

implies the same meaning. In these cases, BLEU will struggle to perform adequately, even if there is 

a system that can translate with high quality. It is noted that even though BLEU is fast and can be 

helpful to assist researchers and developers in quickly performing initial experiments, BLEU should 

not be the primary evaluation technique in NLP papers [87]. Furthermore, it is argued that, due to its 

limitations, the common use of BLEU over the past years has negatively affected research decisions 

in MT [88].  

In recent years, many efforts have been conducted to propose better metrics that can measure 

the quality of MT systems, such as BERTScore [89] and COMET [82], which are proven to correlate 

better with human judgments. However, only a few provided analysis on their use for evaluating chat 

translation, which is notably challenging for the Japanese language with its various challenges, such 

as the anaphoric pronoun resolution, that occurs more frequently in spoken language than in written 

language [53]. Furthermore, many works that try to build models for this are evaluated using BLEU, 

which is often argued as insufficient for advanced models [90]. However, the performance of many 

recent neural-based metrics has yet to be analyzed. This paper compares and analyses results from 

different models measured with various metrics and how these metrics correlate with human judgment. 

This experiment compares how different evaluation metrics perform on chat translation from 

Japanese to English. Then we analyze and emphasize the importance of using suitable metrics for 

measuring the performance of our translation systems depending. Additionally, we provide datasets 
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containing the translation results of the Japanese-English Business Scene Dialogue corpus by three 

NMT models and a set of human-annotated scores of one of the model’s translation results.  

5.2.1  Experimental Setup 

We use three NMT models to translate conversations from Japanese to English and store the 

translation results. Then, we calculate the score of each model’s translation with various evaluation 

metrics, from traditional and commonly used metrics like BLEU to more recent neural-based metrics 

such as BERTScore. Furthermore, we compile human-annotated scores of machine-translated 

sentences from one model, measure how each metric correlates with human scores, and share our 

findings.  

To get the human-annotated score, we built a direct assessment tool for the manual evaluation 

of machine translation. The tool enables the user to view the chat dataset in a familiar chat-like user 

interface displaying the current segment/chat conversation along with its document-level context 

(previous chats), then score each translation from 0 (wrong) to 100 (perfect). It is developed following 

the direct assessment tool used for human evaluation on the WMT 2020 Shared Task on Chat 

Translation [62]. Fig. 15 shows the user interface of this tool. 

 
Fig. 15 User interface of the direct assessment tool 

 

5.2.2  Results and Discussion 

In the first experiment step, we use the Business Scene Dialogue (BSD) corpus [53]. We translated 

the whole development set of the BSD corpus (2,051 chats) using three models, namely our own 

Transformers-based MT model, M2M100, and MarianMT for Japanese to English language direction. 

Previously, only BLEU was used to evaluate the results; in this paper, we use six metrics containing both 

traditional baseline metrics, which are BLEU [72], TER [91], METEOR [92], and chrF [93], and recent 

neural-based metrics (BERTScore and COMET). We can see in Table 19 that even though each metric 

uses different approaches in evaluating the translated results, all metric seems consistent when deciding 

which performs the best of the three models. In other words, traditional metrics are still valid if we only 
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want to rank which models perform better than the others, and the processing time is essential. Table 19 

shows that all metrics indicate MarianMT outperforms the other two models.  

 

Table 19 NMT models performance measured by different metrics 

Metric Ours M2M100 MarianMT 

BLEU 0.14 0.12 0.17 

TER 79.70 78.62 75.54 

METEOR 0.41 0.39 0.47 

chrF 34.31 35.07 39.77 

BERTScore 0.92 0.92 0.93 

COMET -0.022 0.026 0.225 

  

Using the direct assessment tool for manual evaluation, we collected human-annotated scores of 

10 conversations containing 283 chats inside the development set of the BSD corpus, translated by our 

own MT model. We asked two human annotators to score the translation and averaged the results. Both 

annotators speak Japanese and English, one is a native English speaker, and the other is a native Japanese 

speaker. The conversations are picked arbitrarily from the development set. Table 20 shows how each 

metric correlates with the human-annotated score for each chat translation. Neural-based metrics pre-

trained with language models outperform traditional baseline metrics in correlation with human scores. 

It is worth noting that neural-based metrics slow down when the computation is done using the CPU 

only. This can be a limitation when we still experiment with architectures and hyperparameters in the 

initial phases of training an MT model. By calculating the Pearson correlation coefficient (r), it can be 

seen that more recent metrics correlate better with human-annotated scores than traditional baseline 

metrics, with COMET achieving the highest correlation. 

Table 20 Pearson’s r on each metric 

Metric Pearson’s r Elapsed Time 

SentenceBLEU 0.2246 1.06 s 

TER -0.1995 1.19 s 

METEOR 0.2860 1.23 s 

chrF 0.3038 1.07 s 

BERTScore (F1) 0.4342 GPU: 6.54 s 

CPU: 98.73 s 

COMET 0.5246 GPU: 16.71 s 
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CPU: 220.71 s 

 

5.3  ChatGPT for Automated Question-Answer Generation and Scoring 

5.3.1  Experimental Setup 

In the previous chapter, it is shown that, given a conversational dataset, we can generate 

questions using rule-based methods in natural language processing. However, it can also be seen that 

the types of questions are close-ended and limited in forms. We explored the use of ChatGPT [94] to 

improve the quality and creativity of the generated questions. The conversations in our proposed 

system are restructured and prepared to be used as a prompt for ChatGPT. For example, we prepare 

each chat messages in the format of “Speaker Name: Chat Message” separate each chat message in a 

conversation, add “Based on the conversations below:” above the conversation, and add “Please 

generate three questions for a quiz” below the conversation. Fig. 16 shows a sample response from 

ChatGPT. Like the example below, we tried prompting ChatGPT with many conversations from 

different datasets and it can accurately create relevant questions to the given conversation, which 

shows that it has the potential to enhance the current platform for language learning. Furthermore, we 

can also prompt it to check whether a user answer to a particular question it previously generated is 

correct or not, as can be seen in Fig. 17. 

 

 
Fig. 16 A sample response by ChatGPT when prompted to generate questions based on a conversation 
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Fig. 17 Sample responses by ChatGPT when prompted to check whether an answer is correct or not 

5.3.2  Results and Discussion 

The various questions generated by ChatGPT are considered interesting and could potentially 

keep students motivated. We can see that language models have emerged as a promising tool for 

language learning, particularly for those learning English as a foreign language. These models can 

generate human-like text based on a given prompt or conversation, which can be beneficial for students 

in their language practice and comprehension. Moreover, these models can be used to create 

educational content and personalize learning experiences, making them highly relevant for language 

learners. However, despite the potential benefits of large language models, the role of teachers remains 

crucial in language learning. Teachers are responsible for guiding and monitoring student learning, as 

well as ensuring that students are learning in a meaningful and effective way. In language learning, 

teachers play a key role in helping students develop the necessary language skills and competencies, 

as well as fostering critical thinking and cultural understanding. 

Additionally, large language models may have limitations and unexpected brittleness, and it is 

the teacher's responsibility to ensure that students are aware of these limitations and have the necessary 

competencies and literacies to understand the technology and its implications. Teachers should also 

provide students with clear strategies for fact-checking, as well as encourage critical thinking and 

independent learning. Lastly, large language models should be integrated into educational systems and 

teaching curricula in a way that aligns with a clear pedagogical approach. This means that teachers 

should be involved in the design and implementation of large language models and should be provided 

with the necessary training and support to effectively integrate these models into their teaching 

practices. 
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Chapter VI  Conclusion 
 

In recent years, the NLP and machine learning fields advanced rapidly that new methods and 

models are released frequently. It is critical for researchers and practitioners in the educational field to 

be able to recognize which methods and techniques could be used to in their respective field. This 

study experimented with various recent and popular natural language processing (NLP) techniques to 

support second language acquisition of English, for L1 Japanese students. We started off from various 

techniques to handle non-English text data, focusing on Japanese morphological analysis 

methodologies. We compared three popular tokenization tools, MeCab, Sudachi, and SentencePiece 

that all can be used to handle Japanese text and experimented with them to get an understanding of 

how we can leverage them in building a language learning system. Then, we surveyed existing cross-

lingual model, and then experimented with XLM-RoBERTa for handling cross-lingual text with 

transfer learning, and then compared its performance with other models from related works of research.  

From there, we moved on to using sequence-to-sequence Transformers and SentencePiece to 

build our own neural machine translation (NMT) model. We tried building using relatively minimum 

resources in terms of computational cost and dataset, and produced a model which is lightweight and 

fast in translating Japanese to English conversational texts, in comparison to several existing model. 

Despite the quick translation ability, the translation quality could not keep up with the other model 

which is trained with more data and deeper architecture. Finally, we proposed and developed a 

computer-assisted language learning platform to support Japanese intermediate English learners to 

practice text-based conversation which is a highly relevant skill in the global industry these days. The 

proposed system enables the user to conduct self-practices with automatically generated questions and 

get immediate feedback to conduct self-assessment, especially when they are outside classes and 

teacher’s support is limited. Based on the experiments, the proposed system is easy to use and 

considered to be useful for intermediate students to practice English.  

The use of computer-assisted language learning (CALL) and large language models (LLMs) 

has the potential to revolutionize the way English as a foreign language is learned and taught. 

Researchers and developers should always put the human first when developing these systems, as no 

matter how advanced the technologies behind the system, if it is not used accordingly by the users due 

to misunderstanding or inability to do so, it will be less meaningful. Furthermore, the role of the teacher 

in language learning remains crucial. Additionally, a clear strategy within educational systems and a 

strong pedagogical approach that focuses on critical thinking and fact checking are necessary to fully 

integrate and take advantage of large language models in learning settings. Finally, while these models 

can provide access to vast amounts of language data, they can also generate errors or unexpected 

results that can mislead students. As such, it is essential for teachers to monitor and guide students' use 
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of these models to ensure that they are using the models in an effective and meaningful way. Lastly, 

the goal of these kind of research which integrated AI in education should not be to eliminate the role 

of teachers, but to support them. Together with various advances in AI, we can advance the language 

learning field and provide better education for the students. 

 

 

  



 51 

References 
 

[1]  R. Selke, T. Sekiguchi, A. Moehle, A. Elsharqawy and P. Streich, "Foreign Language Proficiency 

as an Asset for Japanese Graduates," IAFOR Journal of Education, vol. 6, no. 1, pp. 103-120, 

2018.  

[2]  I. S. P. Nation, Learning Vocabulary in Another Language, 2 ed., Cambridge: Cambridge 

University Press, 2013.  

[3]  A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I. 

Polosukhin, "Attention Is All You Need," in arXiv preprint arXiv:1706.03762., 2017.  

[4]  J. Tiedemann and S. Thottingal, "OPUS-MT – Building open translation services for the World," 

in The 22nd Annual Conference of the European Association for Machine Translation, Lisboa, 

Portugal, 2020.  

[5]  J. Zhang, H. Luan, M. Sun, F. Zhai, J. Xu, M. Zhang and Y. Liu, "Improving the Transformer 

Translation Model with Document-Level Context," in Conference on Empirical Methods in 

Natural Language Processing, Brussels, 2018.  

[6]  S. Maruf, A. F. T. Martins and G. Haffari, "Contextual Neural Model for Translating Bilingual 

Multi-Speaker Conversations," in Third Conference on Machine Translation: Research Papers, 

Brussels, 2018.  

[7]  E. d. C. Dalcol and M. Poesio, "Polygloss - A conversational agent for language practice," 

Gothenburg, Sweden , 2020.  

[8]  B. McDowell and N. Goodman, "Learning from Omission," in 57th Annual Meeting of the 

Association for Computational Linguistics, Florence, Italy, 2019.  

[9]  L. Portnoff, E. Gustafson, J. Rollinson and K. Bicknell, "Methods for Language Learning 

Assessment at Scale: Duolingo Case Study," 2021. [Online]. Available: 

https://research.duolingo.com/papers/portnoff.edm21.pdf. [Accessed January 2023]. 

[10]  J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, "BERT: Pre-training of Deep Bidirectional 

Transformers for Language Understanding," in NAACL, Minneapolis, Minnesota, 2019.  

[11]  E. Kasneci, K. S. S. Kuchemann, M. Bannert, D. Dementieva, F. Fischer, U. Gasser, G. Groh, S. 

Gunnemann, E. Hullermeier, S. Krusche, G. Kutyniok, T. Michaeli, C. Nerdel and J. Pfeffer, 

"ChatGPT for Good? On Opportunities and Challenges of Large Language Models for 

Education," 23 January 2023. [Online]. Available: https://doi.org/10.35542/osf.io/5er8f. 

[Accessed 1 February 2023]. 

[12]  Y. Kim, H. Lee, J. Shin and K. Jung, "Improving neural question generation using answer 



 52 

separation," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 

6602-6609, 2019.  

[13]  B. Settles, G. T. LaFlair and M. Hagiwara, "Machine Learning–Driven Language Assessment," 

Transactions of the Association for Computational Linguistics, vol. 8, pp. 247-263, 2020.  

[14]  R. Ziai and A. Karnysheva, "Leveraging Task Information in Grammatical Error Correction for 

Short Answer Assessment through Context-based Reranking," in 10th Workshop on NLP for 

Computer Assisted Language Learning, Online, 2021.  

[15]  O. Topsakal and E. Topsakal, "Framework for A Foreign Language Teaching Software for 

Children Utilizing AR, Voicebots and ChatGPT (Large Language Models)," The Journal of 

Cognitive Systems, vol. 7, no. 2, pp. 33-38, 2022.  

[16]  N. Willms and U. Pado, "A Transformer for SAG: What Does it Grade?," in 11th Workshop on 

NLP for Computer Assisted Language Learning, Louvain-la-Neuve, Belgium, 2022.  

[17]  A. H. A. M. Siagian and M. Aritsugi, "Robustness of Word and Character N-gram Combinations 

in Detecting Deceptive and Truthful Opinions," ACM Journal of Data and Information Quality, 

vol. 12, no. 1, pp. 5:1-5:24, 2020.  

[18]  N. Y. Hassan, W. H. Gomaa, G. A. Khoriba and M. H. Haggaq, "Credibility Detection in Twitter 

Using Word N-gram Analysis and Supervised Machine Learning Techniques," International 

Journal of Intelligent Engineering and Systems, vol. 13, no. 1, pp. 291-300, 2020.  

[19]  T. Kudo, K. Yamamoto and Y. Matsumoto, "Applying Conditional Random Fields to Japanese 

Morphological Analysis," in Proceedings of the 2004 Conference on Empirical Methods in 

Natural Language Processing, Barcelona, 2004.  

[20]  K. Takaoka, S. Hisamoto, N. Kawahara, M. Sakamoto, Y. Uchida and Y. Matsumoto, "Sudachi: 

a Japanese Tokenizer for Business," in Proceedings of the Eleventh International Conference on 

Language Resources and Evaluation (LREC 2018), Miyazaki, 2018.  

[21]  T. Kudo and J. Richardson, "SentencePiece: A simple and language independent subword 

tokenizer and detokenizer for Neural Text Processing," in Proceedings of the 2018 Conference 

on Empirical Methods in Natural Language Processing: System Demonstrations, Brussels, 

2018.  

[22]  E. Bataa and J. Wu, "An Investigation of Transfer Learning-Based Sentiment Analysis in 

Japanese," in 57th Annual Meeting of the Association for Computational Linguistics, Florence, 

2019.  

[23]  Y. Kikuta, "Bert pretrained model trained on japanese wikipedia articles," GitHub, 2019. 

[Online]. Available: https://github.com/yoheikikuta/bert-japanese. [Accessed 17 December 

2020]. 



 53 

[24]  L. Nio and K. Murakami, "Japanese Sentiment Classification Using Bidirectional Long Short-

Term Memory Recurrent Neural Network," in Proceedings of the 24th Annual Meetings of the 

Association for Natural Language Processing, Okayama, 2018.  

[25]  Y. Ke and M. Hagiwara, "Subcharacter Embeddings’ Preference on Neural Networks," in 

Proceedings of the 25th Annual Meeting of the Association of Natural Language Processing, 

Nagoya, 2019.  

[26]  X. Zhang and Y. LeCun, "Which Encoding is the Best for Text Classification in Chinese, English, 

Japanese and Korean?," arXiv:1708.02657v2 [cs.CL], 2017. 

[27]  B. Sun, L. Yang, P. Dong, W. Zhang, J. Dong and C. Young, "Super Characters: A Conversion 

from Sentiment Classification to Image Classification," in Proceedings of the 9th Workshop on 

Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Brussels, 

2018.  

[28]  Z. Qu, X. Song, S. Zheng, X. Wang, X. Song and Z. Li, "Improved Bayes Method Based on TF-

IDF Feature and Grade Factor Feature for Chinese Information Classification," in 2018 IEEE 

International Conference on Big Data and Smart Computing, Shanghai, 2018.  

[29]  T. Q. Nguyen and D. Chiang, "Transfer Learning across Low-Resource, Related Languages for 

Neural Machine Translation," in Eighth International Joint Conference on Natural Language 

Processing, Taipei, 2017.  

[30]  G. Neubig and J. Hu, "Rapid Adaptation of Neural Machine Translation to New Languages," in 

Conference on Empirical Methods in Natural Language Processing, Brussels, 2018.  

[31]  S. Mayhew, C.-T. Tsai and D. Roth, "Cheap translation for cross-lingual named entity 

recognition," in Conference on Empirical Methods in Natural Language Processing, 

Copenhagen, 2017.  

[32]  J. Xie, Z. Yang, G. Neubig, N. A. Smith and J. Carbonell, "Neural Cross-Lingual Named Entity 

Recognition with Minimal Resources," in Conference on Empirical Methods in Natural 

Language Process- ing, Brussels, 2018.  

[33]  G. Lample and A. Conneau, "Cross-lingual Language Model Pretraining," in arXiv preprint 

arXiv:1901.07291, 2019.  

[34]  A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzman, E. Grave, M. Ott, 

L. Zettlemoyer and V. Stoyanov, "Unsupervised Cross-lingual Representation Learning at 

Scale," in arXiv preprint arXiv:1911.02116, 2020.  

[35]  A. Søgaard, S. Ruder and I. Vulić, "On the limitations of unsupervised bilingual dictionary 

induction," 2018.  

[36]  X. Chen, A. H. Awadallah, H. Hassan, W. Wang and C. Cardie, "Multi-Source Cross-Lingual 



 54 

Model Transfer: Learning What to Share," 2018.  

[37]  B. Zoph, D. Yuret, J. May and K. Knight, "Transfer Learning for Low-Resource Neural Machine 

Translation," in Conference on Empirical Methods in Natural Language Processing, Austin, 

Texas , 2016.  

[38]  W. U. Ahmad, Z. Zhang, X. Ma, E. Hovy, K.-W. Chang and N. Peng, "On Difficulties of Cross-

Lingual Transfer with Order Differences: A Case Study on Dependency Parsing," 2019.  

[39]  A. Lauscher, V. Ravishankar, I. Vulić and G. Glavaš, "From Zero to Hero: On the Limitations of 

Zero-Shot Cross-Lingual Transfer with Multilingual Transformers," in Conference on Empirical 

Methods in Natural Language Processing (EMNLP), Online, 2020.  

[40]  J. Pfeiffer, I. Vulić, I. Gurevych and S. Ruder, "MAD-X: An Adapter-Based Framework for 

Multi-Task Cross-Lingual Transfer," 2020.  

[41]  P. Keung, Y. Lu, G. Szarvas and N. A. Smith, "The Multilingual Amazon Reviews Corpus," 

2020.  

[42]  B. Willie, K. Vincentio, G. I. Winata, S. Cahyawijaya, X. Li, Z. Y. Lim, S. Soleman, R. 

Mahendra, P. Fung, S. Bahar and A. Purwarianti, "IndoNLU: Benchmark and Resources for 

Evaluating Indonesian Natural Language Understanding," in 1st Conference of the Asia-Pacific 

Chapter of the Association for Computational Linguistics and the 10th International Joint 

Conference on Natural Language Processing, Suzhou, China, 2020.  

[43]  F. Koto, A. Rahimi, J. H. Lau and T. Baldwin, "IndoLEM and IndoBERT: A Benchmark Dataset 

and Pre-trained Language Model for Indonesian NLP," in 28th International Conference on 

Computational Linguistics, Barcelona, Spain (Online) , 2020.  

[44]  A. Purwarianti and I. A. P. A. Crisdayanti, "Improving Bi-LSTM Performance for Indonesian 

Sentiment Analysis Using Paragraph Vector," in International Conference of Advanced 

Informatics: Concepts, Theory and Applications (ICAICTA), Yogyakarta, Indonesia, 2019.  

[45]  D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation by Jointly Learning to Align 

and Translate," in International Conference on Learning Representations, San Diego, CA, 2015.  

[46]  L. Hongzheng, S. Jiu and S. Can, "Revisiting Back-Translation for Low-Resource Machine 

Translation Between Chinese and Vietnamese," IEEE Access, vol. 8, no. 1, pp. 119931-119939, 

2020.  

[47]  A. Mueller and Y. K. Lal, "Sentence-Level Adaptation for Low-Resource Neural Machine 

Translation," in Workshop on Technologies for MT of Low Resource Languages, Dublin, 2019.  

[48]  M. Yang, R. Wang, K. Chen, M. Utiyama, E. Sumita, M. Zhang and T. Zhao, "Sentence-Level 

Agreement for Neural Machine Translation," in Annual Meeting of the Association for 

Computational Linguistics, Florence, 2019.  



 55 

[49]  H. Hassan, A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann, X. Huang, M. Junczys-

Dowmunt, W. Lewis, M. Li, S. Liu, T.-Y. Liu, R. Luo, A. Menezes, T. Qin, F. Seide, X. Tan, F. 

Tian and L. Wu, "Achieving Human Parity on Automatic Chinese to English News Translation," 

in arXiv preprint arXiv:1803.05567, 2018.  

[50]  Unbabel, "Unbabel," 2021. [Online]. Available: https://unbabel.com. [Accessed 28 August 

2021]. 

[51]  Kotozna, "Kotozna," 2021. [Online]. Available: https://kotozna.com/. [Accessed 28 August 

2021]. 

[52]  Language I/O, "Language I/O," 2021. [Online]. Available: https://languageio.com/. [Accessed 

28 August 2021]. 

[53]  M. Rikters, R. Ri, T. Li and T. Nakazawa, "Designing the Business Conversation Corpus," in 

Workshop on Asian Translation, Hongkong, 2019.  

[54]  T. Kudo, H. Ichikawa and H. Kazawa, "A joint inference of deep case analysis and zero subject 

generation for Japanese-to-English statistical machine translation," in Annual Meeting of the 

Association for Computational Linguistics (Short Papers), Baltimore, Maryland, 2014.  

[55]  H. Taira, K. Sudoh and M. Nagata, "Zero Pronoun Resolution can Improve the Quality of J-E 

Translation," in Sixth Workshop on Syntax, Semantics and Structure in Statistical Translation, 

Jeju, 2021.  

[56]  S. Laubli, R. Sennrich and M. Volk, "Has Machine Translation Achieved Human Parity? A Case 

for Document-level Evaluation," in Conference on Empirical Methods in Natural Language 

Processing, Brussels, 2018.  

[57]  A. Toral, S. Castilho, K. Hu and A. Way, "Attaining the Unattainable? Reassessing Claims of 

Human Parity in Neural Machine Translation," in Proceedings of the Third Conference on 

Machine Translation: Research Papers, Brussels, 2018.  

[58]  A. Lopes, M. A. Farajian, R. Bawden, M. Zhang and A. F. T. Martins, "Document-level Neural 

MT: A Systematic Comparison," in 22nd Annual Conference of the European Association for 

Machine Translation, Lisboa, 2020.  

[59]  I. Goto, B. Lu, K. P. Chow, E. Sumita and B. K. Tsou, "Overview of the Patent Machine 

Translation Task at the NTCIR-9 Workshop," in NTCIR-9 Workshop Meeting, Tokyo, Japan, 

2011.  

[60]  T. Nakazawa, M. Yaguchi, K. Uchimoto, M. Utiyama, E. Sumita, S. Kurohashi and H. Isahara, 

"ASPEC: Asian Scientific Paper Excerpt Corpus," in Tenth International Conference on 

Language Resources and Evaluation (LREC'16), Portorož, Slovenia, 2016.  

[61]  S. Shimazu, S. Takase, T. Nakazawa and N. Okazaki, " Evaluation Dataset for Zero Pronoun in 



 56 

Japanese to English Translation," in Conference on Language Resources and Evaluation (LREC 

2020), Marseille, 2020.  

[62]  M. A. Farajian, A. V. Lopes, A. F. T. Martins, S. Maruf and G. Haffari, "Findings of the WMT 

2020 Shared Task on Chat Translation," in 5th Conference on Machine Translation (WMT), 

Online, 2020.  

[63]  C. Federmann, "Appraise: An Open-Source Toolkit for Manual Phrase-Based Evaluation of 

Translations," in The Seventh International Conference on Language Resources and Evaluation , 

Valletta, Malta, 2010.  

[64]  S. M. Yimam, I. Gurevych, R. E. d. Castilho and C. Biemann, "WebAnno: A Flexible, Web-

based and Visually Supported System for Distributed Annotations," Sofia, Bulgaria , 2013.  

[65]  J.-C. Klie, M. Bugert, B. Boullosa, R. E. d. Castilho and I. Gurevych, "WebAnno: A 

Flexible,Web-based and Visually Supported System for Distributed Annotations," Santa Fe, 

New Mexico , 2018.  

[66]  M. Shishido, 逆襲の英会話海外旅行編, 旺文社, 1998.  

[67]  M. Morishita, J. Suzuki and M. Nagata, "JParaCrawl: A Large Scale Web-Based English-

Japanese Parallel Corpus," in The 12th Language Resources and Evaluation Conference, 

Marseille, France, 2020.  

[68]  R. Pryzant, Y. Chung, D. Jurafsky and D. Britz, "JESC: Japanese-English Subtitle Corpus," in 

The Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 

Miyazaki, Japan, 2018.  

[69]  A. Fan, S. Bhosale, H. Schwenk, Z. Ma, A. ElKishky, S. Goyal, M. B. O. Celebi, G. Wenzek, V. 

Chaudhary, N. Goyal, T. Birch, V. Liptchinsky, S. Edunov, E. Grave, M. Auli and A. Joulin, 

"Beyond English-Centric Multilingual Machine Translation," Journal of Machine Learning 

Research , vol. 22, pp. 1-48, 2021.  

[70]  R. Bawden, R. Sennrich, A. Birch and B. Haddow, "Evaluating Discourse Phenomena in Neural 

Machine Translation," in Conference of the North American Chapter of the Association for 

Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New 

Orleans, 2018.  

[71]  F. Hieber, T. Domhan, M. Denkowski, D. Vilar, A. Sokolov, A. Clifton and M. Post, "Sockeye: 

A Toolkit for Neural Machine Translation," ArXiv e-prints, 2017. 

[72]  K. Papineni, S. Roukos, T. Ward and W.-J. Zhu, "BLEU: a Method for Automatic Evaluation of 

Machine Translation," in 40th Annual Meeting of the Association for Computational Linguistics 

(ACL), Philadelphia, 2002.  

[73]  C. Hardmeier, "Discourse in Statistical Machine Translation: A Survey and a Case Study," 



 57 

Discours, Discourse in Statistical Machine Translation, vol. 11, 2012.  

[74]  E.-L. Kasesniemi, Mobile Messages: Young People and a New Communication Culture, 

Tampere University Press, 2003.  

[75]  A. Spagnolli and L. Gamberini, "Interacting via SMS: Practices of social closeness and 

reciprocation," British Journal of Social Psychology, vol. 46, no. 2, pp. 343-364, 2010.  

[76]  N. Cavus and D. Ibrahim, "m-Learning: An experiment in using SMS to support learning new 

English language words," British Journal of Educational Technology, vol. 40, no. 1, pp. 78-91, 

2009.  

[77]  A. Hayati, A. Jalilifar and A. Mashhadi, "Using Short Message Service (SMS) to teach English 

idioms to EFL students," British Journal of Educational Technology, vol. 44, no. 1, pp. 66-81, 

2013.  

[78]  A. Duff, Translation, 5th Edition, Oxford: Oxford University Press, 1996.  

[79]  I. Dagilienė, "Translation as a Learning Method in English Language Teaching," STUDIES 

ABOUT LANGUAGES, no. 12, pp. 124-129, 2012.  

[80]  C. T. Mart, "The Grammar-Translation Method and the Use of Translation to Facilitate Learning 

in ESL Classes," Journal of Advances in English Language Teaching, vol. 1, no. 4, pp. 103-105, 

2013.  

[81]  S. M. Joubran and R. M. Arabiat, "Using Translation in the Framework of Learning a Foreign 

Language," Multicultural Education, vol. 7, no. 8, pp. 61-67, 2021.  

[82]  R. Rei, C. Stewart, A. C. Farinha and A. Lavie, "COMET: A Neural Framework for MT 

Evaluation," in 2020 Conference on Empirical Methods in Natural Language Processing 

(EMNLP), Online, 2020.  

[83]  S. Castilho, S. Doherty, F. Gaspari and J. Moorkens, "Approaches to Human and Machine 

Translation Quality Assessment," Machine Translation: Technologies and Applications book 

series (MATRA,volume 1), pp. 9-38, 14 July 2018.  

[84]  M. Freitag, R. Rei, N. Mathur, C.-k. Lo, C. Stewart, G. Foster, A. Lavie and O. Bojar, "Results 

of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based Human Evaluations 

on TED and News Domain," in Sixth Conference on Machine Translation, Online, 2021.  

[85]  L. Han, "Machine translation evaluation resources and methods: A survey," ArXiv: Computation 

and language, 2016. 

[86]  B. Chen and C. Cherry, "A Systematic Comparison of Smoothing Techniques for Sentence-Level 

BLEU," in Ninth Workshop on Statistical Machine Translation, Baltimore, Maryland, USA, 

2014.  

[87]  E. Reiter, "A Structured Review of the Validity of BLEU," Computational Linguistics, vol. 44, 



 58 

no. 3, p. 393–401 , 2018.  

[88]  M. Hanna and O. Bojar, "A Fine-Grained Analysis of BERTScore," Online, 2021.  

[89]  T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger and Y. Artzi, "BERTScore: Evaluating Text 

Generation with BERT," Online, 2020.  

[90]  N. Mathur, T. Baldwin and T. Cohn, "Tangled up in BLEU: Reevaluating the Evaluation of 

Automatic Machine Translation Evaluation Metrics," Online, 2020.  

[91]  M. Snover, B. Dorr, R. Schwartz, L. Micciulla and J. Makhoul, "A Study of Translation Edit 

Rate with Targeted Human Annotation," Cambridge, Massachusetts, USA , 2006.  

[92]  S. Banerjee and A. Lavie, "METEOR: An Automatic Metric for MT Evaluation with Improved 

Correlation with Human Judgments," Ann Arbor, Michigan , 2005.  

[93]  M. Popović, "chrF: character n-gram F-score for automatic MT evaluation," Lisbon, Portugal, 

2015.  

[94]  OpenAI, "OpenAI," 30 November 2022. [Online]. Available: https://openai.com/blog/chatgpt/. 

[Accessed December 2022]. 

 

 
  



 59 

Appendix 

This section shows snippets/parts of codes which were created during the experiments in each 

chapter described above. However, please note that only experimental codes that can be contained in 

a file, not all, are listed below due to the limited space. The list below includes snippets of codes for: 

• Implementation and Comparison of Various Japanese Tokenizers (Chapter II) 

• Fine-tuning XLM-RoBERTa for Cross-lingual Classification (Chapter II) 

• Training a JapaneseEnglish NMT Model (Chapter III) 

• Providing an API Endpoint for JapaneseEnglish Translation (Chapter IV) 

• Evaluation and Comparison of MT Evaluation Metrics (Chapter V) 

 
A. Implementation and Comparison Various Japanese Tokenizers (Chapter II) 
 

# %% [markdown] 

… 

# ## Train a SentencePiece Model from Train Data (vocab_size=32000) 

# %% 

start = time.time() 

spm.SentencePieceTrainer.train(input='../sampled_binary_train.csv', model_prefix='sp-model-32000-340k', 

vocab_size=32000) 

end = time.time() 

print('Time to train a SP model w/ 32000 vocab_size, from 340k train data:', end-start) 

 

# %% [markdown] 

# ## Tokenization Feature 

 

# %% 

# mecab w/ unidic-lite 

wakati = MeCab.Tagger("-Owakati") 

 

#sudachi 

sudachi = dictionary.Dictionary().create() 

mode = tokenizer.Tokenizer.SplitMode.B 

 

#sentencepiece 

sp = spm.SentencePieceProcessor(model_file='./sp-model-32000-340k.model') 
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# %% [markdown] 

# ## TF-IDF Vectorizer 

 

# %% 

def tokenize_sp(text): 

    tokenized = sp.encode(text, out_type=str) 

    return tokenized 

 

# %% 

def tokenize_mecab(text): 

    tokenized = wakati.parse(text).split() 

    return tokenized 

 

# %% 

def tokenize_sudachi(text): 

    tokenized = [m.surface() for m in sudachi.tokenize(text, mode)] 

    return tokenized 

 

# %% 

X_train, y_train = df_train[2], df_train[0] 

print("Total train samples: ", len(X_train)) 

 

# %% 

tfidfVect_mecab = TfidfVectorizer(tokenizer=tokenize_mecab) 

tfidfVect_sudachi = TfidfVectorizer(tokenizer=tokenize_sudachi) 

tfidfVect_sp = TfidfVectorizer(tokenizer=tokenize_sp) 

 

# %% 

start = time.time() 

X_train_tfidf_mecab = tfidfVect_mecab.fit_transform(X_train) 

end = time.time() 

print("TFIDF Vect time (MeCab): ", end-start) 

 

start = time.time() 

X_train_tfidf_sudachi = tfidfVect_sudachi.fit_transform(X_train) 
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end = time.time() 

print("TFIDF Vect time (Sudachi): ", end-start) 

 

start = time.time() 

X_train_tfidf_sp = tfidfVect_sp.fit_transform(X_train) 

end = time.time() 

print("TFIDF Vect time (SentencePiece): ", end-start) 

 

# %% [markdown] 

# ## Model Training 

 

# %% 

start = time.time() 

clf_lr_mecab = LogisticRegression(random_state=0).fit(X_train_tfidf_mecab, y_train) 

end = time.time() 

print("Training time (LR-MeCab): ", end-start) 

 

start = time.time() 

clf_lr_sudachi = LogisticRegression(random_state=0).fit(X_train_tfidf_sudachi, y_train) 

end = time.time() 

print("Training time (LR-Sudachi): ", end-start) 

 

start = time.time() 

clf_lr_sp = LogisticRegression(random_state=0).fit(X_train_tfidf_sp, y_train) 

end = time.time() 

print("Training time (LR-SP): ", end-start) 

 

start = time.time() 

clf_mnb_mecab = MultinomialNB().fit(X_train_tfidf_mecab, y_train) 

end = time.time() 

print("Training time (MNB-MeCab): ", end-start) 

 

start = time.time() 

clf_mnb_sudachi = MultinomialNB().fit(X_train_tfidf_sudachi, y_train) 

end = time.time() 

print("Training time (MNB-Sudachi): ", end-start) 
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start = time.time() 

clf_mnb_sp = MultinomialNB().fit(X_train_tfidf_sp, y_train) 

end = time.time() 

print("Training time (MNB-SP): ", end-start) 

 

# %% [markdown] 

# ## Evaluation (Error Rate = 1 - accuracy) 

# Predictions on test set 

X_test, y_test = df_test[2], df_test[0] 

print("Total test samples: ", len(X_test)) 

 

X_test_tfidf = tfidfVect_mecab.transform(X_test) 

predicted = clf_lr_mecab.predict(X_test_tfidf) 

print("Error rate (LR-MeCab)", (1-np.mean(predicted == y_test))*100) 

 

X_test_tfidf = tfidfVect_sudachi.transform(X_test) 

predicted = clf_lr_sudachi.predict(X_test_tfidf) 

print("Error rate (LR-Sudachi)", (1-np.mean(predicted == y_test))*100) 

 

X_test_tfidf = tfidfVect_sp.transform(X_test) 

predicted = clf_lr_sp.predict(X_test_tfidf) 

print("Error rate (LR-SP)", (1-np.mean(predicted == y_test))*100) 

 

X_test_tfidf = tfidfVect_mecab.transform(X_test) 

predicted = clf_mnb_mecab.predict(X_test_tfidf) 

print("Error rate (MNB-MeCab)", (1-np.mean(predicted == y_test))*100) 

 

X_test_tfidf = tfidfVect_sudachi.transform(X_test) 

predicted = clf_mnb_sudachi.predict(X_test_tfidf) 

print("Error rate (MNB-Sudachi)", (1-np.mean(predicted == y_test))*100) 

 

X_test_tfidf = tfidfVect_sp.transform(X_test) 

predicted = clf_mnb_sp.predict(X_test_tfidf) 

print("Error rate (MNB-SP)", (1-np.mean(predicted == y_test))*100) 
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# %% [markdown] 

# ## Grid Search CV -- Logistics Regression Parameter Tuning 

 

# %% 

# Grid Search CV => Logistics Regression + SentencePiece 

 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.model_selection import GridSearchCV 

 

start = time.time() 

# set parameters 

model = LogisticRegression(random_state=0) 

solvers = ['newton-cg', 'lbfgs', 'liblinear'] 

penalty = ['l2'] 

c_values = [100, 10, 1.0, 0.1, 0.01] 

# define grid search 

grid = dict(solver=solvers,penalty=penalty,C=c_values) 

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) 

grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, 

scoring='accuracy',error_score=0) 

grid_result = grid_search.fit(X_train_tfidf_sp, y_train) 

# summarize results 

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) 

means = grid_result.cv_results_['mean_test_score'] 

stds = grid_result.cv_results_['std_test_score'] 

params = grid_result.cv_results_['params'] 

for mean, stdev, param in zip(means, stds, params): 

    print("%f (%f) with: %r" % (mean, stdev, param)) 

end = time.time() 

print("Training time (LR-SP): ", end-start) 

 

# %% [markdown] 

# ## Model Training and Evaluation 

 

# %% [markdown] 

# ### Logistics Regression(random_state=0, C=10, penalty=l2, solver lbfgs -- SentencePiece 
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# %% 

start = time.time() 

clf_lr_sp = LogisticRegression(random_state=0, C=10, penalty='l2', solver='lbfgs').fit(X_train_tfidf_sp, 

y_train) 

end = time.time() 

print("Training time (LR-SP): ", end-start, " seconds.") 

 

predicted = clf_lr_sp.predict(X_train_tfidf_sp) 

print("Train Error rate (LR-SP)", (1-np.mean(predicted == y_train))*100) 

 

X_test, y_test = df_test[2], df_test[0] 

print("Total test samples: ", len(X_test)) 

 

X_test_tfidf = tfidfVect_sp.transform(X_test) 

predicted = clf_lr_sp.predict(X_test_tfidf) 

print("Test Error rate (LR-SP)", (1-np.mean(predicted == y_test))*100) 

 

B. Fine-tuning XLM-RoBERTa for Cross-lingual Classification (Chapter II) 
# %% 

…  

# %% 

from google.colab import drive 

drive.mount('/content/drive') 

 

# %% 

# Get the GPU device name. 

device_name = tf.test.gpu_device_name() 

 

# The device name should look like the following: 

if device_name == '/device:GPU:0': 

    print('Found GPU at: {}'.format(device_name)) 

else: 

    raise SystemError('GPU device not found') 

 

# If there's a GPU available... 
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if torch.cuda.is_available():     

 

    # Tell PyTorch to use the GPU.     

    device = torch.device("cuda") 

 

    print('There are %d GPU(s) available.' % torch.cuda.device_count()) 

 

    print('We will use the GPU:', torch.cuda.get_device_name(0)) 

 

# If not... 

else: 

    print('No GPU available, using the CPU instead.') 

    device = torch.device("cpu") 

 

# %% [markdown] 

# # Fine-Tuning XLM-R for Binary Sentiment Classification 

…. 

# %% [markdown] 

# ## XLM-RoBERTa Tokenizer 

 

# %% 

# Download the tokenizer for the XLM-Robert `base` model. 

tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base") 

… 

 

# %% [markdown] 

# ## Convert Sentences to Input IDs 

# %% 

input_ids = [] 

 

for sent in reviews: 

    encoded_sent = tokenizer.encode( 

                        sent,                      

                        add_special_tokens = True, 

                        max_length = 128,           

                        truncation=True, 
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                   ) 

    input_ids.append(encoded_sent) 

 

# Print sentence 0, now as a list of IDs. 

print('Original: ', reviews[0]) 

print('Token IDs:', input_ids[0]) 

 

# %% 

print('Max sentence length: ', max([len(sen) for sen in input_ids])) 

 

# %% [markdown] 

# %% 

MAX_LEN = 64 

print('¥nPadding/truncating all sentences to %d values...' % MAX_LEN) 

print('¥nPadding token: "{:}", ID: {:}'.format(tokenizer.pad_token, tokenizer.pad_token_id)) 

 

input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long",  

                          value=0, truncating="post", padding="post") 

 

print('¥nDone.') 

 

# %% [markdown] 

# %% 

attention_masks = [] 

 

for sent in input_ids: 

    att_mask = [int(token_id > 0) for token_id in sent] 

    attention_masks.append(att_mask) 

 

# %% [markdown] 

# ## Train & Validation Split 

 

# %% 

# Use 90% for training and 10% for validation. 

train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(input_ids, sentiments,  
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                                                            random_state=0, 

test_size=0.1) 

train_masks, validation_masks, _, _ = train_test_split(attention_masks, sentiments, random_state=0, 

test_size=0.1) 

 

train_inputs = torch.tensor(train_inputs) 

validation_inputs = torch.tensor(validation_inputs) 

 

train_labels = torch.tensor(train_labels) 

validation_labels = torch.tensor(validation_labels) 

 

train_masks = torch.tensor(train_masks) 

validation_masks = torch.tensor(validation_masks) 

 

batch_size = 32 

 

# DataLoader for our training set. 

train_data = TensorDataset(train_inputs, train_masks, train_labels) 

train_sampler = RandomSampler(train_data) 

train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size) 

 

# DataLoader for our validation set. 

validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels) 

validation_sampler = SequentialSampler(validation_data) 

validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size) 

 

# %% [markdown] 

# ## Load the XLM-R Pre-trained Model 

 

# %% 

model = XLMRobertaForSequenceClassification.from_pretrained( 

    "xlm-roberta-base", # Use the 12-layer BERT model, with an uncased vocab. 

    num_labels = 2, # 2 for binary classification. 

    output_attentions = False, # Whether the model returns attentions weights. 

    output_hidden_states = False, # Whether the model returns all hidden-states. 

) 
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model.cuda() 

… 

# %% [markdown] 

# ## Optimizer & Learning Rate Scheduler 

# Batch size: 32  

# Learning rate (AdamW): 2e-5 

# Number of epochs: 4 

# %% 

optimizer = AdamW(model.parameters(), 

                  lr = 2e-5, 

                  eps = 1e-8 

                ) 

# %% 

from transformers import get_linear_schedule_with_warmup 

epochs = 4 

total_steps = len(train_dataloader) * epochs 

 

scheduler = get_linear_schedule_with_warmup(optimizer,  

                                            num_warmup_steps = 0, 

                                            num_training_steps = total_steps) 

 

# %% 

def flat_accuracy(preds, labels): 

    pred_flat = np.argmax(preds, axis=1).flatten() 

    labels_flat = labels.flatten() 

    return np.sum(pred_flat == labels_flat) / len(labels_flat) 

 

# %% 

#Helper function for formatting elapsed times. 

def format_time(elapsed): 

    ''' 

    Takes a time in seconds and returns a string hh:mm:ss 

    ''' 

    # Round to the nearest second. 

    elapsed_rounded = int(round((elapsed))) 
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    # Format as hh:mm:ss 

    return str(datetime.timedelta(seconds=elapsed_rounded)) 

 

# %% 

seed_val = 42 

 

random.seed(seed_val) 

np.random.seed(seed_val) 

torch.manual_seed(seed_val) 

torch.cuda.manual_seed_all(seed_val) 

 

loss_values = [] 

 

for epoch_i in range(0, epochs): 

    print("") 

    print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs)) 

    print('Training...') 

    t0 = time.time() 

    total_loss = 0 

    model.train() 

 

    for step, batch in enumerate(train_dataloader): 

        if step % 40 == 0 and not step == 0: 

            elapsed = format_time(time.time() - t0) 

            print('  Batch {:>5,}  of  {:>5,}.    Elapsed: {:}.'.format(step, len(train_dataloader), 

elapsed)) 

        b_input_ids = batch[0].to(device) 

        b_input_mask = batch[1].to(device) 

        b_labels = batch[2].to(device) 

 

        model.zero_grad()         

        outputs = model(b_input_ids,  

                    token_type_ids=None,  

                    attention_mask=b_input_mask,  

                    labels=b_labels) 
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        loss = outputs[0] 

        total_loss += loss.item() 

        loss.backward() 

        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) 

        optimizer.step() 

        scheduler.step() 

 

    avg_train_loss = total_loss / len(train_dataloader)             

    loss_values.append(avg_train_loss) 

 

    print("") 

    print("  Average training loss: {0:.2f}".format(avg_train_loss)) 

    print("  Training epoch took: {:}".format(format_time(time.time() - t0))) 

         

    # Validation 

    t0 = time.time() 

    model.eval() 

    eval_loss, eval_accuracy = 0, 0 

    nb_eval_steps, nb_eval_examples = 0, 0 

 

    # Evaluate data for one epoch 

    for batch in validation_dataloader: 

        batch = tuple(t.to(device) for t in batch) 

        b_input_ids, b_input_mask, b_labels = batch 

        with torch.no_grad():         

            outputs = model(b_input_ids,  

                            token_type_ids=None,  

                            attention_mask=b_input_mask) 

        logits = outputs[0] 

        logits = logits.detach().cpu().numpy() 

        label_ids = b_labels.to('cpu').numpy() 

        tmp_eval_accuracy = flat_accuracy(logits, label_ids) 

        eval_accuracy += tmp_eval_accuracy 

        nb_eval_steps += 1 
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    print("  Accuracy: {0:.2f}".format(eval_accuracy/nb_eval_steps)) 

    print("  Validation took: {:}".format(format_time(time.time() - t0))) 

print("Training complete!") 

 

# Save a trained model, configuration and tokenizer using `save_pretrained()`. 

# This can be reloaded using `from_pretrained()` 

model_to_save = model.module if hasattr(model, 'module') else model 

model_to_save.save_pretrained(output_dir) 

tokenizer.save_pretrained(output_dir) 

 

# %% 

!ls -l --block-size=K ./model_save/ 

 

# %% 

!ls -l --block-size=M ./model_save/pytorch_model.bin 

 

# %% 

# Copy the model files to a directory in your Google Drive. 

!cp -r ./model_save/ "./models/enja-binary-model/" 

… 

 

C. Training a JapaneseEnglish NMT Model (Chapter III) 
… 

en_tokenizer = spm.SentencePieceProcessor(model_file='spm.en.nopretok.model') 

ja_tokenizer = spm.SentencePieceProcessor(model_file='spm.ja.nopretok.model') 

 

def build_vocab(sentences, tokenizer): 

  counter = Counter() 

  for sentence in sentences: 

    counter.update(tokenizer.encode(sentence, out_type=str)) 

  return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>']) 

ja_vocab = build_vocab(trainja, ja_tokenizer) 

en_vocab = build_vocab(trainen, en_tokenizer) 

 

def data_process(ja, en): 

  data = [] 
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  for (raw_ja, raw_en) in zip(ja, en): 

    ja_tensor_ = torch.tensor([ja_vocab[token] for token in ja_tokenizer.encode(raw_ja.rstrip("¥n"), 

out_type=str)], 

                            dtype=torch.long) 

    en_tensor_ = torch.tensor([en_vocab[token] for token in en_tokenizer.encode(raw_en.rstrip("¥n"), 

out_type=str)], 

                            dtype=torch.long) 

    data.append((ja_tensor_, en_tensor_)) 

  return data 

train_data = data_process(trainja, trainen) 

 

BATCH_SIZE = 16 

PAD_IDX = ja_vocab['<pad>'] 

BOS_IDX = ja_vocab['<bos>'] 

EOS_IDX = ja_vocab['<eos>'] 

def generate_batch(data_batch): 

  ja_batch, en_batch = [], [] 

  for (ja_item, en_item) in data_batch: 

    ja_batch.append(torch.cat([torch.tensor([BOS_IDX]), ja_item, torch.tensor([EOS_IDX])], dim=0)) 

    en_batch.append(torch.cat([torch.tensor([BOS_IDX]), en_item, torch.tensor([EOS_IDX])], dim=0)) 

  ja_batch = pad_sequence(ja_batch, padding_value=PAD_IDX) 

  en_batch = pad_sequence(en_batch, padding_value=PAD_IDX) 

  return ja_batch, en_batch 

train_iter = DataLoader(train_data, batch_size=BATCH_SIZE, 

                        shuffle=True, collate_fn=generate_batch) 

 

from torch.nn import (TransformerEncoder, TransformerDecoder, 

                      TransformerEncoderLayer, TransformerDecoderLayer) 

 

class Seq2SeqTransformer(nn.Module): 

    def __init__(self, num_encoder_layers: int, num_decoder_layers: int, 

                 emb_size: int, src_vocab_size: int, tgt_vocab_size: int, 

                 dim_feedforward:int = 512, dropout:float = 0.1): 

        super(Seq2SeqTransformer, self).__init__() 

        encoder_layer = TransformerEncoderLayer(d_model=emb_size, nhead=NHEAD, 

                                                dim_feedforward=dim_feedforward) 
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        self.transformer_encoder = TransformerEncoder(encoder_layer, 

num_layers=num_encoder_layers) 

        decoder_layer = TransformerDecoderLayer(d_model=emb_size, nhead=NHEAD, 

                                                dim_feedforward=dim_feedforward) 

        self.transformer_decoder = TransformerDecoder(decoder_layer, 

num_layers=num_decoder_layers) 

 

        self.generator = nn.Linear(emb_size, tgt_vocab_size) 

        self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size) 

        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size) 

        self.positional_encoding = PositionalEncoding(emb_size, dropout=dropout) 

 

    def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor, 

                tgt_mask: Tensor, src_padding_mask: Tensor, 

                tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor): 

        src_emb = self.positional_encoding(self.src_tok_emb(src)) 

        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg)) 

        memory = self.transformer_encoder(src_emb, src_mask, src_padding_mask) 

        outs = self.transformer_decoder(tgt_emb, memory, tgt_mask, None, 

                                        tgt_padding_mask, memory_key_padding_mask) 

        return self.generator(outs) 

 

    def encode(self, src: Tensor, src_mask: Tensor): 

        return self.transformer_encoder(self.positional_encoding( 

                            self.src_tok_emb(src)), src_mask) 

 

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor): 

        return self.transformer_decoder(self.positional_encoding( 

                          self.tgt_tok_emb(tgt)), memory, 

                          tgt_mask) 

     

class PositionalEncoding(nn.Module): 

    def __init__(self, emb_size: int, dropout, maxlen: int = 5000): 

        super(PositionalEncoding, self).__init__() 

        den = torch.exp(- torch.arange(0, emb_size, 2) * math.log(10000) / emb_size) 

        pos = torch.arange(0, maxlen).reshape(maxlen, 1) 
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        pos_embedding = torch.zeros((maxlen, emb_size)) 

        pos_embedding[:, 0::2] = torch.sin(pos * den) 

        pos_embedding[:, 1::2] = torch.cos(pos * den) 

        pos_embedding = pos_embedding.unsqueeze(-2) 

 

        self.dropout = nn.Dropout(dropout) 

        self.register_buffer('pos_embedding', pos_embedding) 

 

    def forward(self, token_embedding: Tensor): 

        return self.dropout(token_embedding + 

                            self.pos_embedding[:token_embedding.size(0),:]) 

 

class TokenEmbedding(nn.Module): 

    def __init__(self, vocab_size: int, emb_size): 

        super(TokenEmbedding, self).__init__() 

        self.embedding = nn.Embedding(vocab_size, emb_size) 

        self.emb_size = emb_size 

    def forward(self, tokens: Tensor): 

        return self.embedding(tokens.long()) * math.sqrt(self.emb_size) 

     

def generate_square_subsequent_mask(sz): 

    mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1) 

    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) 

    return mask 

 

def create_mask(src, tgt): 

  src_seq_len = src.shape[0] 

  tgt_seq_len = tgt.shape[0] 

 

  tgt_mask = generate_square_subsequent_mask(tgt_seq_len) 

  src_mask = torch.zeros((src_seq_len, src_seq_len), device=DEVICE).type(torch.bool) 

 

  src_padding_mask = (src == PAD_IDX).transpose(0, 1) 

  tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1) 

  return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask 
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SRC_VOCAB_SIZE = len(ja_vocab) 

TGT_VOCAB_SIZE = len(en_vocab) 

EMB_SIZE = 512 

NHEAD = 8 

FFN_HID_DIM = 512 

BATCH_SIZE = 16 

NUM_ENCODER_LAYERS = 3 

NUM_DECODER_LAYERS = 3 

NUM_EPOCHS = 16 

transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, 

                                 EMB_SIZE, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, 

                                 FFN_HID_DIM) 

 

for p in transformer.parameters(): 

    if p.dim() > 1: 

        nn.init.xavier_uniform_(p) 

 

transformer = transformer.to(device) 

 

loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX) 

 

optimizer = torch.optim.Adam( 

    transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9 

) 

def train_epoch(model, train_iter, optimizer): 

  model.train() 

  losses = 0 

  for idx, (src, tgt) in enumerate(train_iter): 

      src = src.to(device) 

      tgt = tgt.to(device) 

 

      tgt_input = tgt[:-1, :] 

 

      src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input) 

 

      logits = model(src, tgt_input, src_mask, tgt_mask, 
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                                src_padding_mask, tgt_padding_mask, src_padding_mask) 

 

      optimizer.zero_grad() 

 

      tgt_out = tgt[1:,:] 

      loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) 

      loss.backward() 

 

      optimizer.step() 

      losses += loss.item() 

  return losses / len(train_iter) 

 

def evaluate(model, val_iter): 

  model.eval() 

  losses = 0 

  for idx, (src, tgt) in (enumerate(valid_iter)): 

    src = src.to(device) 

    tgt = tgt.to(device) 

 

    tgt_input = tgt[:-1, :] 

 

    src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input) 

 

    logits = model(src, tgt_input, src_mask, tgt_mask, 

                              src_padding_mask, tgt_padding_mask, src_padding_mask) 

    tgt_out = tgt[1:,:] 

    loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) 

    losses += loss.item() 

  return losses / len(val_iter) 

 

for epoch in range(1, NUM_EPOCHS+1): 

  start_time = time.time() 

  train_loss = train_epoch(transformer, train_iter, optimizer) 

  end_time = time.time() 

  print((f"Epoch: {epoch}, Train loss: {train_loss:.3f}, " 

          f"Epoch time = {(end_time - start_time):.3f}s")) 
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D. Providing an API Endpoint for JapaneseEnglish Translation (Chapter IV) 
… 

en_tok = spm.SentencePieceProcessor( 

    model_file='enja_spm_models/spm.en.nopretok.model') 

ja_tok = spm.SentencePieceProcessor( 

    model_file='enja_spm_models/spm.ja.nopretok.model') 

 

# open a file, where you ant to store the data 

file = open('en_vocab_all.pkl', 'rb') 

# load information from file 

en_voc = pickle.load(file) 

# close the file 

file.close() 

 

# open a file, where you ant to store the data 

file = open('ja_vocab_all.pkl', 'rb') 

# load information from file 

ja_voc = pickle.load(file) 

# close the file 

file.close() 

 

PAD_IDX = ja_voc['<pad>'] 

BOS_IDX = ja_voc['<bos>'] 

EOS_IDX = ja_voc['<eos>'] 

 

SRC_VOCAB_SIZE = len(ja_voc) 

TGT_VOCAB_SIZE = len(en_voc) 

EMB_SIZE = 512 

NHEAD = 8 

FFN_HID_DIM = 512 

BATCH_SIZE = 16  # reduce this to prevent cuda out of memory? 

NUM_ENCODER_LAYERS = 3 

NUM_DECODER_LAYERS = 3 

NUM_EPOCHS = 16 
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class Seq2SeqTransformer(nn.Module): 

    def __init__(self, num_encoder_layers: int, num_decoder_layers: int, 

                 emb_size: int, src_vocab_size: int, tgt_vocab_size: int, 

                 dim_feedforward: int = 512, dropout: float = 0.1): 

        super(Seq2SeqTransformer, self).__init__() 

        encoder_layer = TransformerEncoderLayer(d_model=emb_size, nhead=NHEAD, 

                                                dim_feedforward=dim_feedforward) 

        self.transformer_encoder = TransformerEncoder( 

            encoder_layer, num_layers=num_encoder_layers) 

        decoder_layer = TransformerDecoderLayer(d_model=emb_size, nhead=NHEAD, 

                                                dim_feedforward=dim_feedforward) 

        self.transformer_decoder = TransformerDecoder( 

            decoder_layer, num_layers=num_decoder_layers) 

 

        self.generator = nn.Linear(emb_size, tgt_vocab_size) 

        self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size) 

        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size) 

        self.positional_encoding = PositionalEncoding( 

            emb_size, dropout=dropout) 

 

    def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor, 

                tgt_mask: Tensor, src_padding_mask: Tensor, 

                tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor): 

        src_emb = self.positional_encoding(self.src_tok_emb(src)) 

        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg)) 

        memory = self.transformer_encoder(src_emb, src_mask, src_padding_mask) 

        outs = self.transformer_decoder(tgt_emb, memory, tgt_mask, None, 

                                        tgt_padding_mask, memory_key_padding_mask) 

        return self.generator(outs) 

 

    def encode(self, src: Tensor, src_mask: Tensor): 

        return self.transformer_encoder(self.positional_encoding( 

            self.src_tok_emb(src)), src_mask) 

 

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor): 

        return self.transformer_decoder(self.positional_encoding( 
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            self.tgt_tok_emb(tgt)), memory, 

            tgt_mask) 

 

class PositionalEncoding(nn.Module): 

    def __init__(self, emb_size: int, dropout, maxlen: int = 5000): 

        super(PositionalEncoding, self).__init__() 

        den = torch.exp(- torch.arange(0, emb_size, 2) 

                        * math.log(10000) / emb_size) 

        pos = torch.arange(0, maxlen).reshape(maxlen, 1) 

        pos_embedding = torch.zeros((maxlen, emb_size)) 

        pos_embedding[:, 0::2] = torch.sin(pos * den) 

        pos_embedding[:, 1::2] = torch.cos(pos * den) 

        pos_embedding = pos_embedding.unsqueeze(-2) 

 

        self.dropout = nn.Dropout(dropout) 

        self.register_buffer('pos_embedding', pos_embedding) 

 

    def forward(self, token_embedding: Tensor): 

        return self.dropout(token_embedding + 

                            self.pos_embedding[:token_embedding.size(0), :]) 

 

class TokenEmbedding(nn.Module): 

    def __init__(self, vocab_size: int, emb_size): 

        super(TokenEmbedding, self).__init__() 

        self.embedding = nn.Embedding(vocab_size, emb_size) 

        self.emb_size = emb_size 

 

    def forward(self, tokens: Tensor): 

        return self.embedding(tokens.long()) * math.sqrt(self.emb_size) 

 

def generate_square_subsequent_mask(sz): 

    mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1) 

    mask = mask.float().masked_fill(mask == 0, float( 

        '-inf')).masked_fill(mask == 1, float(0.0)) 

    return mask 
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def create_mask(src, tgt): 

    src_seq_len = src.shape[0] 

    tgt_seq_len = tgt.shape[0] 

 

    tgt_mask = generate_square_subsequent_mask(tgt_seq_len) 

    src_mask = torch.zeros((src_seq_len, src_seq_len), 

                           device=DEVICE).type(torch.bool) 

 

    src_padding_mask = (src == PAD_IDX).transpose(0, 1) 

    tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1) 

    return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask 

 

def greedy_decode(model, src, src_mask, max_len, start_symbol): 

    src = src.to(device) 

    src_mask = src_mask.to(device) 

 

    memory = model.encode(src, src_mask) 

    ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device) 

    for i in range(max_len-1): 

        memory = memory.to(device) 

        memory_mask = torch.zeros(ys.shape[0], memory.shape[0]).to( 

            device).type(torch.bool) 

        tgt_mask = (generate_square_subsequent_mask(ys.size(0)) 

                    .type(torch.bool)).to(device) 

        out = model.decode(ys, memory, tgt_mask) 

        out = out.transpose(0, 1) 

        prob = model.generator(out[:, -1]) 

        _, next_word = torch.max(prob, dim=1) 

        next_word = next_word.item() 

 

        ys = torch.cat([ys, 

                        torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0) 

        if next_word == EOS_IDX: 

            break 

    return ys 
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def translate(model, src, src_vocab, tgt_vocab, src_tokenizer, tgt_tokenizer): 

    model.eval() 

    tokens = [BOS_IDX] + [src_vocab.stoi[tok] 

                          for tok in src_tokenizer.encode(src, out_type=str)] + [EOS_IDX] 

    num_tokens = len(tokens) 

    src = (torch.LongTensor(tokens).reshape(num_tokens, 1)) 

    src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool) 

    tgt_tokens = greedy_decode( 

        model,  src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten() 

    return tgt_tokenizer.decode([tgt_vocab.itos[tok] for tok in tgt_tokens]).replace("<bos> ", 

"").replace("<eos>", "") 

 

mdl = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, 

                         EMB_SIZE, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, 

                         FFN_HID_DIM) 

 

mdl.load_state_dict(torch.load( 

    'inference_model_jpara_jesc_bsd_backtranslated', map_location=torch.device('cpu'))) 

mdl = mdl.to(device) 

 

app = Flask(__name__) 

CORS(app) 

 

@app.route("/translate", methods=['POST']) 

def translateJa(): 

    record = json.loads(request.data) 

    translated = translate(mdl, record['chat'], ja_voc, en_voc, ja_tok, en_tok) 

    return jsonify({'translated': translated}) 

 

if __name__ == '__main__': 

    port = int(os.environ.get("PORT", 5000)) 

    app.run(host='0.0.0.0', port=port) 

 

E. Evaluation and Comparison of MT Evaluation Metrics (Chapter V) 
… 

"""# Load Parallel Data w/ Translations""" 
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import pandas as pd 

 

df = pd.read_csv('results/results_with_da_scores_our_model.tsv', sep='¥t') 

refs, preds, srcs = df['Target_En'].tolist(), df['Translation_En_Ours'].tolist(), df['Source_Ja'].tolist() 

 

refs2d = [] 

for ref in refs: 

    refs2d.append([ref]) 

 

len(refs), len(preds), len(refs2d) 

 

df_all = pd.read_json('bsd_dev.json') 

print(df_all['tag'].unique()) 

df_convs = pd.concat([pd.json_normalize(df_all['conversation'][i]) for i in 

range(len(df_all))],ignore_index=True) 

english = df_convs["en_sentence"].values.tolist() 

japanese = df_convs["ja_sentence"].values.tolist() 

len(english) 

 

df_all 

 

"""# Calculate [BERTScore](https://huggingface.co/spaces/evaluate-metric/bertscore)""" 

 

from google.colab import output 

output.enable_custom_widget_manager() 

 

bertscore = evaluate.load("bertscore") 

… 

 

with open(b"results/bertscore_results_our_model.obj","rb") as file: 

  bertscore_results = pickle.load(file) 

 

len(bertscore_results["precision"]), len(bertscore_results["recall"]), len(bertscore_results["f1"]) 

 

df['BertScore_Prec'] = bertscore_results["precision"] 
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df['BertScore_Recall'] = bertscore_results["recall"] 

df['BertScore_F1'] =bertscore_results["f1"] 

df 

 

"""# Calculate [COMET](https://huggingface.co/spaces/evaluate-metric/comet)""" 

 

comet_metric = evaluate.load('comet') 

… 

with open(b"results/comet_results_our_model.obj","rb") as file: 

  comet_results = pickle.load(file) 

 

df['Comet_Score'] = comet_results['scores'] 

 

"""# Calculate Baseline Metrics 

 

## BLEU 

""" 

 

from google.colab import output 

output.enable_custom_widget_manager() 

 

bleus = [] 

bleu = evaluate.load("bleu") 

st = time.time() 

for idx, pred in enumerate(preds): 

  bleus.append(bleu.compute(predictions=[pred], references=[refs2d[idx]])['bleu']) 

en = time.time() 

print(en-st, 'seconds') 

print(len(bleus)) 

 

"""## chrF""" 

 

from google.colab import output 

output.enable_custom_widget_manager() 

 

chrfs = [] 
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chrf = evaluate.load("chrf") 

st = time.time() 

for idx, pred in enumerate(preds): 

  chrfs.append(chrf.compute(predictions=[pred], references=[refs2d[idx]])['score']) 

en = time.time() 

print(en-st, 'seconds') 

print(len(chrfs)) 

 

"""## TER""" 

 

from google.colab import output 

 

output.enable_custom_widget_manager() 

ters = [] 

ter = evaluate.load("ter") 

st = time.time() 

for idx, pred in enumerate(preds): 

  ters.append(ter.compute(predictions=[preds[idx]], references=[refs2d[idx]])['score']) 

en = time.time() 

print(en-st, 'seconds') 

print(len(ters)) 

 

"""## METEOR""" 

 

from google.colab import output 

output.enable_custom_widget_manager() 

 

meteors = [] 

meteor = evaluate.load('meteor') 

st = time.time() 

for idx, pred in enumerate(preds): 

  meteors.append(meteor.compute(predictions=[preds[idx]], references=[refs2d[idx]])['meteor']) 

en = time.time() 

print(en-st, 'seconds') 

print(len(meteors)) 
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df['BLEU_Score'] = bleus 

df['chrF_Score'] = chrfs 

df['TER_Score'] = ters 

df['METEOR_Score'] = meteors 

df 

 

"""# Check Pearson Correlation Coefficient r""" 

 

# normalize bert_f1 and comet score? 

# ... 

 

score_a = df['Human_Score_A'].tolist() 

score_b = df['Human_Score_B'].tolist() 

avg_human_score = [] 

for i in range(len(score_a)): 

  avg_human_score.append((score_a[i]+score_b[i])/2) 

print(len(avg_human_score)) 

# average the scores into avg_human_score 

 

# calculate pearson correlation -1 ~ 1 with new averaged DA scores 

from scipy import stats 

print("Pearson (Sentence BLEU): ", stats.pearsonr(avg_human_score, df['BLEU_Score'].tolist())[0]) 

print("Pearson (TER): ", stats.pearsonr(avg_human_score, df['TER_Score'].tolist())[0]) 

print("Pearson (METEOR): ", stats.pearsonr(avg_human_score, df['METEOR_Score'].tolist())[0]) 

print("Pearson (chrF): ", stats.pearsonr(avg_human_score, df['chrF_Score'].tolist())[0]) 

print("Pearson (BERTScore F1): ", stats.pearsonr(avg_human_score, df['BertScore_F1'].tolist())[0]) 

print("Pearson (BERTScore Precision): ", stats.pearsonr(avg_human_score, 

df['BertScore_Prec'].tolist())[0]) 

print("Pearson (BERTScore Recall): ", stats.pearsonr(avg_human_score, df['BertScore_Recall'].tolist())[0]) 

print("Pearson (COMET): ", stats.pearsonr(avg_human_score, df['Comet_Score'].tolist())[0]) 

 

# pearson correlation between human score A and B 

print("Pearson (DA Score A and B): ", stats.pearsonr(score_a, score_b)[0]) 

# what's a good correlation coefficient for human annotations? 

 

"""# Evaluate three models with every metric 
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## Load translation results 

""" 

 

ours = pd.read_csv("results/bsd_dev_translations_our_model.tsv", sep='¥t') 

m2m100 = pd.read_csv("results/bsd_dev_translations_m2m100.tsv", sep='¥t') 

marianmt = pd.read_csv("results/bsd_dev_translations_marianmt.tsv", sep='¥t') 

 

# Ours 

ours_preds = ours['Translation_En'].tolist() 

ours_refs = ours['Target_En'].tolist() 

ours_srcs = ours['Source_Ja'].tolist() 

 

ours_refs2d = [] 

for ref in ours_refs: 

    ours_refs2d.append([ref]) 

 

st = time.time() 

ours_bertscore = bertscore.compute(predictions=ours_preds, references=ours_refs, lang="en") 

print('bertscore elapsed time: ', time.time()-st) 

st = time.time() 

ours_comet = comet_metric.compute(predictions=ours_preds, references=ours_refs, sources=ours_srcs) 

print('comet elapsed time: ', time.time()-st) 

st = time.time() 

ours_bleu = bleu.compute(predictions=ours_preds, references=ours_refs2d) 

print('bleu elapsed time: ', time.time()-st) 

st = time.time() 

ours_ter = ter.compute(predictions=ours_preds, references=ours_refs2d) 

print('ter elapsed time: ', time.time()-st) 

st = time.time() 

ours_meteor = meteor.compute(predictions=ours_preds, references=ours_refs2d) 

print('meteor elapsed time: ', time.time()-st) 

st = time.time() 

ours_chrf = chrf.compute(predictions=ours_preds, references=ours_refs2d) 

print('chrf elapsed time: ', time.time()-st) 

st = time.time() 
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print("¥n¥n¥n") 

 

print('bertscore', ours_bertscore) 

print('comet', ours_comet) 

print('bleu', ours_bleu) 

print('ter', ours_ter) 

print('meteor', ours_meteor) 

print('chrf', ours_chrf) 

 

# m2m100 

m2m100_preds = m2m100['Translation_En'].tolist() 

m2m100_refs = m2m100['Target_En'].tolist() 

m2m100_srcs = m2m100['Source_Ja'].tolist() 

 

m2m100_refs2d = [] 

for ref in m2m100_refs: 

    m2m100_refs2d.append([ref]) 

 

st = time.time() 

m2m100_bertscore = bertscore.compute(predictions=m2m100_preds, references=m2m100_refs, 

lang="en") 

print('bertscore elapsed time: ', time.time()-st) 

st = time.time() 

m2m100_comet = comet_metric.compute(predictions=m2m100_preds, references=m2m100_refs, 

sources=m2m100_srcs) 

print('comet elapsed time: ', time.time()-st) 

st = time.time() 

m2m100_bleu = bleu.compute(predictions=m2m100_preds, references=m2m100_refs2d) 

print('bleu elapsed time: ', time.time()-st) 

st = time.time() 

m2m100_ter = ter.compute(predictions=m2m100_preds, references=m2m100_refs2d) 

print('ter elapsed time: ', time.time()-st) 

st = time.time() 

m2m100_meteor = meteor.compute(predictions=m2m100_preds, references=m2m100_refs2d) 

print('meteor elapsed time: ', time.time()-st) 
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st = time.time() 

m2m100_chrf = chrf.compute(predictions=m2m100_preds, references=m2m100_refs2d) 

print('chrf elapsed time: ', time.time()-st) 

st = time.time() 

 

print("¥n¥n¥n") 

 

print('bertscore', m2m100_bertscore) 

print('comet', m2m100_comet) 

print('bleu', m2m100_bleu) 

print('ter', m2m100_ter) 

print('meteor', m2m100_meteor) 

print('chrf', m2m100_chrf) 

 

# marianmt 

marianmt_preds = marianmt['Translation_En'].tolist() 

marianmt_refs = marianmt['Target_En'].tolist() 

marianmt_srcs = marianmt['Source_Ja'].tolist() 

 

marianmt_refs2d = [] 

for ref in marianmt_refs: 

    marianmt_refs2d.append([ref]) 

 

st = time.time() 

marianmt_bertscore = bertscore.compute(predictions=marianmt_preds, references=marianmt_refs, 

lang="en") 

print('bertscore elapsed time: ', time.time()-st) 

st = time.time() 

marianmt_comet = comet_metric.compute(predictions=marianmt_preds, references=marianmt_refs, 

sources=marianmt_srcs) 

print('comet elapsed time: ', time.time()-st) 

st = time.time() 

marianmt_bleu = bleu.compute(predictions=marianmt_preds, references=marianmt_refs2d) 

print('bleu elapsed time: ', time.time()-st) 

st = time.time() 

marianmt_ter = ter.compute(predictions=marianmt_preds, references=marianmt_refs2d) 
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print('ter elapsed time: ', time.time()-st) 

st = time.time() 

marianmt_meteor = meteor.compute(predictions=marianmt_preds, references=marianmt_refs2d) 

print('meteor elapsed time: ', time.time()-st) 

st = time.time() 

marianmt_chrf = chrf.compute(predictions=marianmt_preds, references=marianmt_refs2d) 

print('chrf elapsed time: ', time.time()-st) 

st = time.time() 

 

print("¥n¥n¥n") 

 

print('bertscore', marianmt_bertscore) 

print('comet', marianmt_comet) 

print('bleu', marianmt_bleu) 

print('ter', marianmt_ter) 

print('meteor', marianmt_meteor) 

print('chrf', marianmt_chrf) 

 

def avrg(lst): 

  return sum(lst)/len(lst) 

 

print('bertscore', avrg(ours_bertscore['f1'])) 

print('bertscore', avrg(m2m100_bertscore['f1'])) 

print('bertscore', avrg(marianmt_bertscore['f1'])) 

 

print('comet', ours_comet['mean_score']) 

print('comet', m2m100_comet['mean_score']) 

print('comet', marianmt_comet['mean_score']) 

 

print('bleu', ours_bleu['bleu']) 

print('bleu', m2m100_bleu['bleu']) 

print('bleu', marianmt_bleu['bleu']) 

 

print('ter', ours_ter['score']) 

print('ter', m2m100_ter['score']) 

print('ter', marianmt_ter['score']) 
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print('meteor', ours_meteor['meteor']) 

print('meteor', m2m100_meteor['meteor']) 

print('meteor', marianmt_meteor['meteor']) 

 

print('chrf', ours_chrf['score']) 

print('chrf', m2m100_chrf['score']) 

print('chrf', marianmt_chrf['score']) 
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